

Physical Institute Internal structure of relativistic jets

V.S. Beskin

P.N.Lebedev Physical Institute

Moscow Institute of Physics and Technology (National Research University)

- Thanks
- AGN Jets internal structure (observations)
- AGN Jets internal structure (interpretation and problems) Is "central engine" a Faraday disk? Theoretical challenge – magnetic field Theoretical challenge – electric current Theoretical challenge – potential drop
- AGN Jets internal structure (theory)
- Thanks again

Active Galactic Nuclei (AGN) $M \sim (10^8 - 10^9) M_{\odot}$, $R \sim 10^{13}$ cm

Active Galactic Nuclei (AGN) $M \sim (10^8 - 10^9) M_{\odot}$, $R \sim 10^{13}$ cm

More than 50 years

Last 10 years - new possibilities

Time (MOJAVE)

Base (RadioAstron)

Frequency (EHT)

Y.Y.Kovalev et al, ApJ, 668, L27 (2007)

F. Mertens, A.P.Lobanov, R.C.Walker, P.E.Hardee, A&A, 595, A54 (2016)

F. Mertens, A.P.Lobanov, R.C.Walker, P.E.Hardee, A&A, 595, A54 (2016)

Acceleratrion

D.C. Homan, M.L.Lister, Y.Y.Kovalev et al, ApJ, 798, 134 (2015)

Acceleratrion

MOJAVE XII

$$\dot{\Gamma}/\Gamma = 10^{-3} \text{ yr}^{-1}$$

F. Mertens, A.P.Lobanov, R.C.Walker, P.E.Hardee, A&A, 595, A54 (2016)

Collimation

Y.Y.Kovalev, A.B.Pushkarev, E.E.Nokhrina, VB, A.V.Chernoglazov, M. L. Lister, T.Savolainen, MNRAS (in press)

Collimation

F. Mertens, A.P.Lobanov, R.C.Walker, P.E.Hardee, A&A, 595, A54 (2016)

Rotation

F. Mertens, A.P.Lobanov, R.C.Walker, P.E.Hardee, A&A, 595, A54 (2016)

Rotation

F. Mertens, A.P.Lobanov, R.C.Walker, P.E.Hardee, A&A, 595, A54 (2016)

Rotation

Confirmation of MHD model (goto end)

"Central engine" is a Faraday disk

Faraday's disk dynamo - for producing continuous (pure) dc voltage. This was the world's first electrical generator.

"Central engine" is a Faraday disk

Dynamo-machine

a magneta rotationa wirea handle

Faraday's disk dynamo - for producing continuous (pure) dc voltage. This was the world's first electrical generator.

Time-independent

"Central engine" is a Faraday disk

$$W_{\rm tot} = I\delta U$$

Dynamo-machine

$$\delta U \sim E R_0 \sim \left(\frac{\Omega R_0}{c}\right) B_0 R_0$$
•a magnet
•a rotation
•a wire
•a handle
$$I \sim I_{\rm GJ} = \pi R_0^2 c \rho_{\rm GJ}$$

$$\rho_{\rm GJ} = -\frac{\mathbf{\Omega} \cdot \mathbf{B}}{2\pi c}$$

$$W_{\rm tot} \approx \left(\frac{\Omega R_0}{c}\right)^2 B_0^2 R_0^2 c$$

Is black hole a Faraday disk?

R.Blandford (1976)

R.Lovelace (1976)

Is black hole a Faraday disk?

BZ = Faraday disk?

R.Blandford (1976), BZ (1977)

$$W_{\rm BZ} \sim (\Omega r_{\rm g}/c)^2 B^2 r_{\rm g}^2 c$$

Is black hole a Faraday disk?

Membrane paradigm

$$E_{\rm H} = \alpha E_{\hat{\theta}}$$
$$B_{\rm H} = \alpha B_{\hat{\varphi}}$$

"Ohm's law"

BH fields

$$E_{\hat{\theta}} = -B_{\hat{\varphi}}$$
$$\mathbf{J}_{\mathrm{H}} = \frac{c}{4\pi} \mathbf{E}_{\mathrm{H}}$$

$$\mathcal{R} = 4\pi/c = 377 \text{ O}$$

K.Thorne

= BZ "boundary condition" at the horizon

$$4\pi I(\Psi) = \left[\Omega_{\rm H} - \Omega_{\rm F}(\Psi)\right] \sin \theta \frac{r_{\rm g}^2 + a^2}{r_{\rm g}^2 + a^2 \cos^2 \theta} \left(\frac{\mathrm{d}\Psi}{\mathrm{d}\theta}\right)$$

Statement #1

Evaluation

$$W_{\rm tot} = I\delta U$$

is universal and can be used for rotating black holes at the base of relativistic jets.

According to membrane paradigm

$$I \sim \delta U / \mathcal{R} \sim I_{\rm GJ}$$

and, hence, we return to

$$W_{\rm BZ} \sim (\Omega r_{\rm g}/c)^2 B^2 r_{\rm g}^2 c$$

BZ due to Frame-dragging (Lense-Thirring) effect

Homogeneously moving space cannot be detected. (First Newton Law) Inhomogeneously moving space can be detected.

 $r_{\rm g} = \frac{2GM}{c^2}$

BZ due to Frame-dragging (Lense-Thirring) effect

Schwarzschild black hole

for laboratory at rest - tidal forces

BZ due to Frame-dragging (Lense-Thirring) effect

Kerr black hole

for laboratory at rest – gyroscope precession

BZ due to Frame-dragging (Lense-Thirring) effect

accelerating reference frame

rotating reference frame $\mathbf{F}_{\mathrm{C}} = 2M \left[\mathbf{v} \times \mathbf{\Omega} \right]$

gravitational mass

inertial mass

 $\mathbf{g} \sim \mathbf{E}$

 $\mathbf{F} = M \mathbf{g}$

 $\mathbf{g} \sim \mathbf{E}, \quad \mathbf{H} \sim \mathbf{B}$ $\mathbf{F} = M\left(\mathbf{g} + \frac{\mathbf{v}}{c} \times \mathbf{H}\right)$

Gravito-magnetic field

GR: masses produce \boldsymbol{g}

mass motion produces ${\bf H}$

Maxwell equations

div
$$\mathbf{E} = 4\pi\rho_{\rm e}$$
,
rot $\mathbf{E} + \frac{1}{c}\frac{\partial \mathbf{B}}{\partial t} = 0$,
div $\mathbf{B} = 0$,
rot $\mathbf{B} - \frac{1}{c}\frac{\partial \mathbf{E}}{\partial t} = \frac{4\pi}{c}\mathbf{j}$.

$$\mathbf{F} = e\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}\right)$$

Einstein equations for weak fields

div
$$\mathbf{g} = -4\pi G \rho_{\rm m}$$
,
rot $\mathbf{g} = 0$,
div $\mathbf{H} = 0$,
rot $\mathbf{H} - \frac{4}{c} \frac{\partial \mathbf{g}}{\partial t} = -\frac{16\pi}{c} G \rho_{\rm m} \mathbf{v}$.

 $\mathbf{F} = M\left(\mathbf{g} + \frac{\mathbf{v}}{c} \times \mathbf{H}\right)$

Larmor precession due to Lorentz force

$$\Omega_{\rm L} = \frac{eB}{2m_{\rm e}c}$$

Larmor precession due to Lorentz force

$$\Omega_{\rm L} = \frac{eB}{2m_{\rm e}c}$$

frame-dragging precession due to 'Lorentz' force

$$\Omega_{\rm g} = \frac{H}{2c}$$

Gravity Probe B

 $\frac{H}{2c}$ $\Omega_{
m g}$

$$\mathbf{g} = -\frac{GM}{r^2}\mathbf{n},$$
$$\mathbf{H} = \frac{2G}{c}\frac{\mathbf{J}_r - 3\mathbf{n}(\mathbf{J}_r\mathbf{n})}{r^3}$$

MIL

Gravity Probe B

Geodesic precession

$$\Omega_{\rm geo} = \frac{1+2\gamma}{2} \frac{GMv}{r^2c^2}$$

(-6,6018±0,0183) "/год

-6,6061 "/год

$$\Omega_{\rm g} = \frac{1+\gamma}{2} \frac{GJ_r}{r^3 c^2}$$

Frame-dragging precession

(-0,0372±0,0072) "/год

-0,0392 "/год

BZ due to Frame-dragging (Lense-Thirring) effect

for laboratory at rest - "rotation", i.e. EMF

Statement #2

BZ = Faraday induction law + Penrose process

$$W_{\rm BZ} \sim (\Omega r_{\rm g}/c)^2 B^2 r_{\rm g}^2 c$$

EMF results from frame-dragging (Lense-Thirring) effect which mimics the time-dependence due to inhomogeneous flow of space through the circuit.

$$\nabla \times (\boldsymbol{\alpha} \mathbf{E}) = \hat{\mathscr{L}}_{\boldsymbol{\beta}} \mathbf{B}$$

Magnetically dominated outflow

- F.C.Michel, ApJ, 180, 133 (1973)
- •Regular magnetic field
- Longitudinal electric currentRotation

Main parameters

 Michel magnetization parameter F.C.Michel, ApJ, 158, 727 (1969) (maximal <u>bulk</u> Lorentz-factor)

$$\sigma_{\rm M} = \frac{\Omega_0 e B_0 r_{\rm jet}^2}{4\lambda m_{\rm e} c^3} ~\mu ~{\rm now}$$

Multiplicity parameter

$$\lambda = \frac{n^{(\text{lab})}}{n_{\text{GJ}}} \qquad \rho_{\text{GJ}} = -\frac{\mathbf{\Omega} \cdot \mathbf{B}}{2\pi c}$$

Total potential drop

$$\lambda \sigma_{\rm M} \sim rac{e E_r r_{\rm jet}}{m_{\rm e} c^2}$$

Main parameters

Magnetization – multiplication connection

MHD 'central engine' energy losses

$$W_{\rm tot} \approx \left(\frac{\Omega R_0}{c}\right)^2 B_0^2 R_0^2 c$$

$$\lambda = \frac{n^{(\text{lab})}}{1 - 1}$$

 $\sigma_{\rm M} = \frac{\Omega_0 e B_0 r_{\rm jet}^2}{4 \lambda_{\rm max} c_{\rm s}^2}$

After some algebra

$$\sigma_{\rm M} \sim \frac{1}{\lambda} \left(\frac{W_{\rm tot}}{W_{\rm A}} \right)^{1/2}$$

$$W_{\rm A} = m_{\rm e}^2 c^5 / e^2 \approx 10^{17} \,{\rm erg}\,{\rm s}^{-1}$$
E.E.Nokhrina, VB, Y.Y.Kovalev, A.A.Zheltoukhov. MNRAS, 447, 2726 (2015)

• No assumption about equipartition (in both cases we know the bulk particle energy Γmc^2).

$$\Gamma \sim \sigma_{M}$$

• The only free parameter is the fraction of synchrotron radiating particles $n_{\rm syn} = \xi n_{\rm e}$

 $\xi \approx 0.01$

$$\lambda = 7.3 \times 10^{13} \left(\frac{\eta}{\text{mas GHz}}\right)^{3/4} \left(\frac{D_{\text{L}}}{\text{Gpc}}\right)^{3/4} \qquad \sigma_{\text{M}} = 1.4 \left[\left(\frac{\eta}{\text{mas GHz}}\right) \left(\frac{D_{\text{L}}}{\text{Gpc}}\right) \frac{\chi}{1+z}\right]^{-3/4} \\ \times \left(\frac{\chi}{1+z}\right)^{3/4} \frac{1}{(\delta \sin \varphi)^{1/2}} \frac{1}{(\xi \gamma_{\text{min}})^{1/4}} \qquad \times \sqrt{\delta \sin \varphi} \left(\xi \gamma_{\text{min}}\right)^{1/4} \sqrt{\frac{P_{\text{jet}}}{10^{45} \text{ erg s}^{-1}}}$$

E.E.Nokhrina, VB, Y.Y.Kovalev, A.A.Zheltoukhov, MNRAS, 447, 2726 (2015)

Figure 1. Distributions of the multiplicity parameter λ for the sample of 97 sources. Two objects with $\lambda = 2.8 \times 10^{14}$ and 3.6×10^{14} lie out of the shown range of values.

E.E.Nokhrina, VB, Y.Y.Kovalev, A.A.Zheltoukhov, MNRAS, 447, 2726 (2015)

Figure 2. Distributions of the Michel magnetization parameter σ_M for the sample of 97 sources.

E.E.Nokhrina, VB, Y.Y.Kovalev, A.A.Zheltoukhov, MNRAS, 447, 2726 (2015)

60

A remark

Electron-positron vs electron-proton

$$\sigma_{\rm M} \sim \frac{1}{\lambda} \left(\frac{W_{\rm tot}}{W_{\rm A}} \right)^{1/2}$$

$$W_{\rm A} = m_{\rm e}^2 c^5 / e^2 \approx 10^{17} \,{\rm erg}\,{\rm s}^{-1}$$

Magnetic field magnitude: Eddington value is necessary

$$B_{\rm Edd} \approx 10^4 \,\mathrm{G} \,\left(\frac{M}{10^9 M_\odot}\right)^{-1/2}$$

Magnetic field generation: external vs internal

external (advection) 100 50 0 -50 -100 -100-50 0 50 100 internal (dynamo)

Magnetic field topology: external vs internal

Magnetic field topology: homogeneous vs RFP

J.McKinney, A.Tchekhovskoy, R.Blandford

O. Bromberg, A. Tchekhovskoy

<u>Magnetic field topology</u>: homogeneous vs RFP (evolution of dipole field)

M.M.Romanova et al, MNRAS, 399, 1802 (2009)

Magnetic tower (wind + diff. rotation)

D.Lynden-Bell, MNRAS, **279**, 389 (1996)

Y.Kato, M.R.Hayashi, R.Matsumoto, ApJ, **600**, 338 (2004)

Statement #3

- Approximation of the homogeneous poloidal magnetic field is a reasonable model of relativistic jets.
- Total electric current can be zero.

Magnetic tower (cylindrical) vs diverging outflow (spherical)

subsonic

VS

transonic

D.Lynden-Bell, MNRAS, **279**, 389 (1996)

$$r_{\rm F} \approx \sigma_{\rm M}^{1/3} R_{\rm L} \sin^{1/3} \theta$$

N.Bucciantini, T.Thompson, J.Arons, E.Quataert, L.Del Zanna, MNRAS, **368**, 1717 (2006)

S.Komissarov, MNRAS, **350**, 1431 (2004)

Critical condition on the sonic surface determines

accretion rate

$$\frac{r}{n}\frac{\mathrm{d}n}{\mathrm{d}r} = \frac{2v^2 - \frac{GM}{r}}{c_s^2 - v^2}$$

H.Bondi, MNRAS, 112, 195 (1952)

$$\Phi_{\rm cr} = 4\pi r_*^2 c_* n_* = \pi \left(\frac{2}{5-3\Gamma}\right)^{(5-3\Gamma)/2(\Gamma-1)} \frac{(GM)^2}{c_{\infty}^3} n_{\infty}$$

Critical condition on the (fast magneto)sonic surface determines

accretion rate

electric current I

 $\frac{u}{u_{q}}$ 1,015 1,000 1,000 1,000 1,000 1,015 r/r_{q}

H.Bondi, MNRAS, **112**, 195 (1952)

E.J.Weber, L.Davis, ApJ, **148**, 217 (1967)

$$\Phi_{\rm cr} = 4\pi r_*^2 c_* n_* = \pi \left(\frac{2}{5-3\Gamma}\right)^{(5-3\Gamma)/2(\Gamma-1)} \frac{(GM)^2}{c_\infty^3} n_\infty$$

$$I \sim I_{\rm GJ} = \pi R_0^2 c \rho_{\rm GJ}$$

Critical condition on the (fast magneto)sonic surfaces determine electric current I + angular velocity $\Omega_{\rm F}$

E.J.Weber, L.Davis, ApJ, **148**, 217 (1967)

M.Takahashi et al, ApJ, 363, 206 (1990)

$$I \sim I_{\rm GJ} = \pi R_0^2 c \rho_{\rm GJ}$$

$$\Omega_{\rm F}\sim\Omega_{\rm H}/2$$

Statement #4

Outflow is transonic, so the electric current is determined by critical condition at the fast magnetosonic surface. For double transonic relativistic flow

$$I \sim I_{\rm GJ} = \pi R_0^2 c \rho_{\rm GJ}$$

and

$$\Omega_{\rm F} \sim \Omega_{\rm H}/2$$

Statement #5

Membrane paradigm resistivity $\mathcal{R} = 4\pi/c = 377$ O corresponding to "boundary condition" on the horizon

$$4\pi I(\Psi) = \left[\Omega_{\rm H} - \Omega_{\rm F}(\Psi)\right] \sin \theta \frac{r_{\rm g}^2 + a^2}{r_{\rm g}^2 + a^2 \cos^2 \theta} \left(\frac{\mathrm{d}\Psi}{\mathrm{d}\theta}\right)$$

is the critical condition on the inner fast magnetosonic surface. As

$$\Omega_{\rm F} \sim \Omega_{\rm H}/2$$

we return to

$$W_{\rm BZ} \sim (\Omega r_{\rm g}/c)^2 B^2 r_{\rm g}^2 c$$

F.C.Michel (1973)

What to do with (enormous) potential difference?

Ferraro isorotation law implies constant electric potential ($\Omega_{\rm F}$) along magnetic field lines.

Longitudinal electric field?

MHD simulations do not include δU into consideration Io-Jovian electromagnetic interaction

D.V.Khangulyan et al, ApJ, **774**, 113 (2013)

S.V.Bogovalov, D.Khangulyan, A.V.Koldoba, G.V.Ustyugova, F.Aharonian, MNRAS, **387**, 63 (2008) MNRAS **419**, 3426 (2012)

Internal structure – AGN

Homan D. C. et al, ApJ, 789, 134 (2015)

Acceleration at small distances, $\dot{\Gamma}/\Gamma = 10^{-3} \text{ yr}^{-1}$ decceleration at large distances.

pc (projection)

- It is necessary to include external media into consideration.
 It is the ambient pressure that determines jet transverse scale and particle energy.
- Simple asymptotic solutions for the bulk Lorentz-factor.
- Transverse profile of the poloidal magnetic field.
- Magnetization multiplication connection.

 μ now

Main parameters

 Michel magnetization parameter (maximal <u>bulk</u> Lorentz-factor)

$$\sigma_{\rm M} = \frac{\Omega_0 e B_0 r_{\rm jet}^2}{4\lambda m_{\rm e} c^3} \checkmark$$

• Multiplicity parameter

$$\lambda = \frac{n^{(\text{lab})}}{n_{\text{GJ}}} \qquad \rho_{\text{GJ}} = -\frac{\Omega \cdot \mathbf{B}}{2\pi c}$$

• Total potential drop

$$\lambda \sigma_{\rm M} \sim \frac{e E_r r_{\rm jet}}{m_{\rm e} c^2}$$

It is necessary to include the <u>external media</u> into consideration.
 It is the ambient pressure that determines the jet transverse scale and particle energy.

1D approach for cylindrical jets

$$\begin{cases} \frac{\mathrm{d}\mathcal{M}^2}{\mathrm{d}r_{\perp}} &= F_1(\mathcal{M}^2, \Psi, r_{\perp}) \\ \frac{\mathrm{d}\Psi}{\mathrm{d}r_{\perp}} &= F_2(\mathcal{M}^2, \Psi, r_{\perp}) \end{cases}$$

VB, L.M.Malyshkin. Astron. Lett., **26**, 208 (2000) VB, Phys. Uspekhi, **40**, 659 (1997)

T.Lery, J.Heyvaerts, S.Appl, C.A.Norman, A&A, **347**, 1055 (1999)

It is necessary to include the <u>external media</u> into consideration.
 It is the ambient pressure that determines the jet transverse scale and particle energy.

$$r_{\rm jet} \sim R \left(\frac{B_{\rm in}^2}{8\pi P_{\rm ext}}\right)^{1/4}$$

$$\frac{W_{\text{part}}}{W_{\text{tot}}} \sim \frac{1}{\sigma_{\rm M}} \left[\frac{B^2(R_{\rm L})}{8\pi P_{\rm ext}} \right]^{1/4}$$

 F_{jet}

VB, L.M.Malyshkin. Astron. Lett., **26**, 208 (2000) VB. Phys. Uspekhi, **40**, 659 (1997) T.Lery, J.Heyvaerts, S.Appl, C.A.Norman. A&A, **347**, 1055 (1999)

It is necessary to include the <u>external media</u> into consideration.
 It is the ambient pressure that determines the jet transverse scale and particle energy.

(a)

It is necessary to include the <u>external media</u> into consideration.
 It is the ambient pressure that determines the jet transverse scale and particle energy.

J.McKinney, *A.Tchekhovskoy*, R.Blandford, MNRAS, **423**, 3083 (2012)

Simple asymptotic solutions for Lorentz-factor

Quasi-cylindrical flows ($\Gamma < \sigma_{M}$)

$$\Gamma = x_r$$

$$x_r = \Omega_{\rm F} r_\perp / c$$

Quasi-radial flows

$$\Gamma = C \sqrt{\frac{R_{\rm c}}{r_{\perp}}}$$

Simple asymptotic solutions for Lorentz-factor

Quasi-cylindrical flows ($\Gamma < \sigma_{M}$)

$$\Gamma = x_r \qquad x_r = \Omega_{\rm F} r_{\perp} / c$$

This is an asymptotic behavior!

Jets – theory J.McKinney, MNRAS, 367, 1797 (2006)

Parabolic structure terminates the efficiency of acceleration

• Self-similar solution $z \sim r_{\perp}^{k}$

• For
$$k > 2$$

 $\Gamma = x_r \sim z^{1/k}$

• For
$$k < 2$$

$$\Gamma = (R_{\rm c} \, r_{\perp})^{1/2}$$

$$\sim z^{(k-1)/k}$$

• Parabolic k = 2

In all cases $\Gamma \theta \sim 1$

R. Narayan, J.McKinney, A.F.Farmer, MNRAS, **375**, 548, 2006

Transverse profile of the poloidal magnetic field

T.Chiueh, Zh.-Yu.Li, M.C.Begelman. ApJ, **377**, 462 (1991)

D.Eichler. ApJ, **419**, 111 (1993)

S.V.Bogovalov. Astron. Lett., 21, 565 (1995)

M.Camenzind. In Herbig-Haro Flows and the Birth of Low Mass Stars. Eds. Reipurth B., Bertout C. (1997)

$$B_{\rm p} = \frac{B_0}{1 + (r_\perp/r_{\rm core})^2}$$

$$r_{\rm core} = \gamma_{\rm in} R_{\rm L}$$

Transverse profile of the poloidal magnetic field

And this was odd, because... homogeneneous poloidal magnetic field is the solution for magnetically dominated flow.

Transverse profile of the poloidal magnetic field

Theorem 5.2. In the relativistic case, in the presence of the environment with rather high pressure ($B_{ext} > B_{min}$) the poloidal magnetic field inside the jet remains practically constant: $B_p \approx B_{ext}$. For small external pressure ($B_{ext} < B_{min}$) in the vicinity of the rotation axis there must form a core region $r_{\perp} < \varpi_c = \gamma_{in} R_L$ with the magnetic field $B_p \approx B_{min}$ (5.69) containing only a small part of the total magnetic flux Ψ_0 :

$$rac{\Psi_{
m core}}{\Psi_0} pprox rac{\gamma_{
m in}}{\sigma}$$

For $r_{\perp} < \varpi_c$, the poloidal magnetic field B_p decreases as

$$B_{\rm p} \propto r_{\perp}^{2-lpha},$$

where $\alpha < 2$.

$$B_{\min} = \frac{1}{\sigma \gamma_{\text{in}}} B(R_{\text{L}}) \qquad B(R_{\text{L}}) = \Omega^2 \Psi_{\text{tot}} / \pi c^2 \qquad B_{\text{p}}^2 / \bar{8}\pi \approx P_{\text{ext}}$$

Springer

Central core

 $\begin{cases} \frac{\mathrm{d}\mathcal{M}^2}{\mathrm{d}r_{\perp}} &= F_1(\mathcal{M}^2, \Psi, r_{\perp}) \\ \frac{\mathrm{d}\Psi}{\mathrm{d}r_{\perp}} &= F_2(\mathcal{M}^2, \Psi, r_{\perp}) \end{cases}$

VB, E.E.Nokhrina, MNRAS, **389**, 335 (2007) MNRAS, **397,** 1486 (2009)

Yu.Lyubarsky, ApJ, **698**, 1570 (2009)

Central core

S. S. Komissarov et al.

S.Komissarov, M.Barkov, N.Vlahakis, A.Königl, MNRAS, 380, 51 (2006)

A.Tchekhovskoy, J.McKinney, R.Narayan, ApJ, 699, 1789 (2009)

Central core

O.Porth, Ch.Fendt, Z.Meliani, B.Vaidya, ApJ, 737, 42 (2011)

A.V.Chernoglazov, VB, V.I.Pariev, MNRAS (2019)

A.V.Chernoglazov,VB, V.I.Pariev, MNRAS (2019)

A.V.Chernoglazov,VB, V.I.Pariev, MNRAS (2019)

Internal structure

A.V.Chernoglazov, VB, V.I.Pariev, MNRAS (2019)

Jet boundary shape break

E.E.Nokhrina, L.I.Gurvits, VB, M.Nakamura, K.Asada, K.Hada, MNRAS (in press)

Jet boundary shape break

Y.Y.Kovalev, A.B.Pushkarev, E.E.Nokhrina, VB, A.V.Chernoglazov, M. L. Lister, T.Savolainen, MNRAS, (in press)

Jet boundary shape break

E.E.Nokhrina, VB, Y.Y.Kovalev, A.A.Zheltoukhov. MNRAS, 447, 2726 (2015)

Slow acceleration along the jet

$$\dot{\Gamma}/\Gamma = 10^{-3} \text{ yr}^{-1}$$

Figure 5. Dependence of Lorentz factor on coordinate along the jet in assumption of $\zeta \propto r_{\perp}^3$ (solid line) and $\zeta \propto r_{\perp}^2$ (dashed line) form of the jet.

Statement #6

- Saturation
- Central core
- Inhomogeneous Lorentz factor

Conclusion

Go ahead!