A Few Words About AGNs and PSRs

V.S. Beskin P.N.Lebedev Physical Institute Moscow Institute of Physics and Technology

with A.A.Philippov Berkeley V.I.Krauz Kurchatov Institute Ya.N.Istomin P.N.Lebedev Physical Institute A.V.Chernoglazov, A.Galishnikova, E.E. Nokhrina, D.Novoselov, M.Rashkovetskiy Moscow Institute of Physics and Technology

Supported by

Russian Science Foundation (Grant No. 16-12-10051)

Astrophysical jets: from observations to theory and laboratory experiment

Government of the Russian Federation (agreement No. 05.Y09.21.0018)

Laboratory of Fundamental and Applied Research of Relativistic Objects of the Universe in MIPT

Plan

- AGNs (information only)
- PSRs (in more detail)

AGNs

- Laboratory experiment on plasma focus facility
- One (rather technical) theoretical result +

Plasma focus facility in KI

Plasma focus facility in KI

Plasma focus facility in KI

	YSO		PF-3
			(35 cm above)
			the anode)
Peclet	10^{11}	> 1, convective	$> 10^{7}$
		heat transfer	
Reynolds	10^{13}	$\gg 1$, the	$10^4 - 10^5$
		viscosity	
		is important	
Magnetic	10^{15}	> 1, magnetic	~ 100
Reynolds		field is frozen	
Mach	10 - 50	> 1, the jet is	> 10 (for Ne
$(V_{ m jet}/V_{ m cs})$		supersonic	and Ar)
β	$\gg 1$ near source		~ 0.35 (for Ne
$(P_{ m pl}/P_{ m magn})$	$\ll 1$ at 10 AU		and Ar)
density contrast	> 1		1 - 10
$(n_{\rm jet}/n_{\rm amb})$			

Table 1. Key dimensionless parameters

Plasma focus facility – the very beginning

Plasma focus facility – rather stable shape, interaction with ambient gas

Plasma focus facility – toroidal magnetic field

Plasma focus facility – spheromak?

Theoretical result

Matching to ambient gas pressure -

how it affects the jet thickness?

VLBA+VLA1, 15 GHz

The inner jet structure is clearly resolved, a short counter jet is detected

Y.Y.Kovalev et al, ApJ, 668, L27 (2007)

nature astronomy

A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii

G. Giovannini^{® 1,2*}, T. Savolainen^{® 3,4,5*}, M. Orienti², M. Nakamura⁶, H. Nagai⁷, M. Kino^{8,9}, M. Giroletti^{® 2}, K. Hada⁹, G. Bruni^{® 2,5,10}, Y. Y. Kovalev^{® 5,11,12}, J. M. Anderson^{® 13}, F. D'Ammando^{1,2}, J. Hodgson¹⁴, M. Honma⁹, T. P. Krichbaum⁵, S.-S. Lee^{14,15}, R. Lico^{1,2}, M. M. Lisakov¹¹, A. P. Lobanov⁵, L. Petrov^{12,16}, B. W. Sohn^{14,15,17}, K. V. Sokolovsky^{11,18,19}, P. A. Voitsik¹¹, J. A. Zensus⁵ and S. Tingay²⁰

Matching to ambient gas pressure

Ι

Standard approach

 $\frac{B_{\varphi}^2}{8\pi} = P_{\text{ext}}$ $B_{\varphi} = \frac{2I}{cr_{\perp}}$

 Ψ_{tot} Ψ

$$r_{\rm jet} = \left(\frac{I^2}{2\pi c^2 P_{\rm ext}}\right)^{1/2}$$

Matching to ambient gas pressure

More realistic

 $\frac{B_{\varphi}^2}{8\pi} = P_{\text{ext}}$ $B_{\varphi} = \frac{2I}{cr_{\perp}}$

 $r_{\rm jet} = \left(\frac{I^2}{2\pi c^2 P_{\rm ext}}\right)^{1/2}$

Jets – theory

 μ now

Main parameters

 Michel magnetization parameter (maximal <u>bulk</u> Lorentz-factor)

$$\sigma_{\rm M} = \frac{\Omega_0 e B_0 r_{\rm jet}^2}{4\lambda m_{\rm e} c^3} \checkmark$$

• Multiplicity parameter

$$\lambda = \frac{n^{(\text{lab})}}{n_{\text{GJ}}} \qquad \rho_{\text{GJ}} = -\frac{\Omega \cdot \mathbf{B}}{2\pi c}$$

• Total potential drop

$$\lambda \sigma_{\rm M} \sim \frac{e E_r r_{\rm jet}}{m_{\rm e} c^2}$$

Jets – theory

It is necessary to include the <u>external media</u> into consideration. It is the ambient pressure that determines the jet transverse scale and particle energy.

1D approach for cylindrical jets

$$\begin{cases} \frac{\mathrm{d}\mathcal{M}^2}{\mathrm{d}r_{\perp}} &= F_1(\mathcal{M}^2, \Psi, r_{\perp}) \\ \frac{\mathrm{d}\Psi}{\mathrm{d}r_{\perp}} &= F_2(\mathcal{M}^2, \Psi, r_{\perp}) \end{cases}$$

VB, L.M.Malyshkin. Astron. Lett., **26**, 208 (2000) VB. Phys. Uspekhi, **40**, 659 (1997)

T.Lery, J.Heyvaerts, S.Appl, C.A.Norman. A&A, **347**, 1055 (1999)

Jets – theory

It is necessary to include the <u>external media</u> into consideration. It is the ambient pressure that determines the jet transverse scale and particle energy.

$$r_{\rm jet} = \left(\frac{I^2}{2\pi c^2 P_{\rm ext}}\right)^{1/2}$$

VB, L.M.Malyshkin. Astron. Lett., **26**, 208 (2000) VB. Phys. Uspekhi, **40**, 659 (1997) T.Lery, J.Heyvaerts, S.Appl, C.A.Norman. A&A, **347**, 1055 (1999)

On the internal structure of relativistic jets collimated by ambient gas pressure

V. S. Beskin,^{1,2★} A. V. Chernoglazov,^{1★} A. M. Kiselev^{1,2} and E. E. Nokhrina¹

¹Moscow Institute of Physics and Technology, Dolgoprudny, Institutsky per. 9, Moscow 141700, Russia ²P. N. Lebedev Physical Institute, Leninsky prosp. 53, Moscow 119991, Russia

We can explain the break

We can determine

• Internal structure

We can determine

Doppler factor map

PSRs

The nature of the torque

- Our theory (BGI) GJ current
- Standard approach as large as necessary

How does it work?

$$W_{\rm tot}^{\rm (MHD)} \approx \frac{1}{4} \frac{B_0^2 \Omega^4 R^6}{c^2} (1 + \sin^2 \chi)$$

What is the current system?

What is the current system?

Current losses

1. Direct current losses (BGI) $K_{\parallel} = -c_{\parallel} \frac{B_0^2 \Omega^3 R^6}{c^3} i_s,$ $K_{\perp} = -c_{\perp} \frac{B_0^2 \Omega^3 R^6}{c^3} \left(\frac{\Omega R}{c}\right) i_a.$ ('second term')

$$\mathbf{K} = \frac{R^3}{c} \int \mathbf{J}_{s} \left(\mathbf{B} \mathbf{n} \right) do = \frac{R^3}{4\pi} \int \{ [\mathbf{n} \times \mathbf{B}^{(3)}] (\mathbf{B}^{(0)} \mathbf{n}) + [\mathbf{n} \times \mathbf{B}^{(0)}] (\mathbf{B}^{(3)} \mathbf{n}) \} do$$

3. Additional separatrix current

STEP #I

Vacuum magneto-dipole

Vacuum: magneto-dipole

$$\mathbf{K} = \frac{1}{c} \int \left[\mathbf{r} \times \left[\mathbf{J}_{s} \times \mathbf{B} \right] \right] \mathrm{d}S$$

$$K_{z'} = \frac{2}{3} \frac{\mathfrak{m}^2}{R^3} \left(\frac{\Omega R}{c}\right)^3 \sin^2 \chi$$

$$K_{x'} = \frac{2}{3} \frac{\mathfrak{m}^2}{R^3} \left(\frac{\Omega R}{c}\right)^3 \sin \chi \cos \chi$$

Vacuum: magneto-dipole

Energy losses

$$W_{\rm tot} = \frac{c}{4\pi} \int (\beta_{\rm R} \mathbf{B}) (\mathbf{B} \mathrm{d} \mathbf{S})$$

 $\beta_{\mathrm{R}} = \frac{\mathbf{\Omega} \times \mathbf{r}}{c}$

Vacuum (Deusch) 1 $\Omega \quad \Omega^3$ 1 1 = Ω^4

$$\mathbf{K} = \frac{R^3}{c} \int \mathbf{J}_{s} \left(\mathbf{B}\mathbf{n}\right) do = \frac{R^3}{4\pi} \int \{ [\mathbf{n} \times \mathbf{B}^{(3)}] (\mathbf{B}^{(0)}\mathbf{n}) + [\mathbf{n} \times \mathbf{B}^{(0)}] (\mathbf{B}^{(3)}\mathbf{n}) \} do$$

$$\mathbf{H}_{r} = \mathbf{R}_{1}(a) \left\{ \frac{a^{3}}{r^{3}} \cos \chi \cos \theta + \frac{h_{1}/\rho}{(h_{1}/\rho)_{\alpha}} \sin \chi \sin \theta e^{i\lambda} \right\}$$

Vacuum: magneto-dipole

Energy losses

$$\beta_{\rm R} = \frac{\mathbf{\Omega} \times \mathbf{r}}{c}$$

Vacuum (Deusch) 1 $\Omega \Omega^3$ 1 1 = Ω^4

$$\mathbf{H}_{r} = \mathbf{R}_{1}(a) \left\{ \frac{a^{3}}{r^{3}} \cos \chi \cos \theta + \frac{h_{1}/\rho}{(h_{1}/\rho)_{\alpha}} \sin \chi \sin \theta e^{i\lambda} \right\}$$

$$\begin{split} \mathbf{H}_{\theta} &= \frac{1}{2} \,\mathbf{R}_{1}(a) \left\{ \frac{a^{3}}{r^{3}} \cos\chi\sin\theta + \left[\left(\frac{\rho^{2}}{\rho h_{2}^{'} + h_{2}} \right)_{\alpha} h_{2} + \left(\frac{\rho}{h_{1}} \right)_{\alpha} \left(h_{1}^{'} + \frac{h_{1}}{\rho} \right) \right] \sin\chi\cos\theta e^{i\lambda} \right\} \\ \mathbf{H}_{\varphi} &= \frac{1}{2} \,\mathbf{R}_{1}(a) \left\{ \left(\frac{\rho^{2}}{h_{2}^{'} + h_{2}} \right)_{\alpha} h_{2} \cos2\theta + \left(\frac{\rho}{h_{1}} \right)_{\alpha} \left(h_{1}^{'} + \frac{h_{1}}{\rho} \right) \right\} i \sin\chi e^{i\lambda} \\ \mathbf{E}_{r} &= \frac{1}{2} \,\omega\mu_{0} a \,\mathbf{R}_{1}(a) \left\{ -\frac{1}{2} \frac{a^{4}}{r^{4}} \cos\chi(3\cos2\theta + 1) + 3 \left(\frac{\rho}{\rho h_{2}^{'} + h_{2}} \right)_{\alpha} \frac{h_{2}}{\rho} \sin\chi\sin2\theta e^{i\lambda} \right\} \\ \mathbf{E}_{\theta} &= \frac{1}{2} \,\omega\mu_{0} a \,\mathbf{R}_{1}(a) \left\{ -\frac{a^{4}}{r^{4}} \cos\chi\sin2\theta + \left[\left(\frac{\rho h_{2}^{'} + h_{2}}{\rho} \right)_{\alpha} \frac{\rho}{\rho h_{2}^{'} + h_{2}} \cos2\theta - \frac{h_{1}}{h_{1}(\alpha)} \right] \sin\chi e^{i\lambda} \right\} \\ \mathbf{E}_{\varphi} &= \frac{1}{2} \,\omega\mu_{0} a \,\mathbf{R}_{1}(a) \left\{ \left(\frac{\rho}{\rho h_{2}^{'} + h_{2}} \right)_{\alpha} \frac{\rho h_{2}^{'} + h_{2}}{\rho} - \frac{h_{1}}{h_{1}(\alpha)} \right\} i \sin\chi\cos\theta e^{i\lambda}. \end{split}$$

Landau-Lifshits, Field Theory

Orthogonal rotator

$$\begin{split} B_r^{\perp} &= \frac{|\mathbf{m}|}{r^3} \sin \theta \operatorname{Re} \left(2 - 2i \frac{\Omega r}{c} \right) \exp \left(i \frac{\Omega r}{c} + i \varphi - i \Omega t \right), \\ B_{\theta}^{\perp} &= \frac{|\mathbf{m}|}{r^3} \cos \theta \operatorname{Re} \left(-1 + i \frac{\Omega r}{c} + \frac{\Omega^2 r^2}{c^2} \right) \exp \left(i \frac{\Omega r}{c} + i \varphi - i \Omega t \right), \\ B_{\varphi}^{\perp} &= \frac{|\mathbf{m}|}{r^3} \operatorname{Re} \left(-i - \frac{\Omega r}{c} + i \frac{\Omega^2 r^2}{c^2} \right) \exp \left(i \frac{\Omega r}{c} + i \varphi - i \Omega t \right), \\ E_r^{\perp} &= 0, \\ E_{\theta}^{\perp} &= \frac{|\mathbf{m}|\Omega}{r^2 c} \operatorname{Re} \left(-1 + i \frac{\Omega r}{c} \right) \exp \left(i \frac{\Omega r}{c} + i \varphi - i \Omega t \right), \\ E_{\varphi}^{\perp} &= \frac{|\mathbf{m}|\Omega}{r^2 c} \cos \theta \operatorname{Re} \left(-i - \frac{\Omega r}{c} \right) \exp \left(i \frac{\Omega r}{c} + i \varphi - i \Omega t \right). \end{split}$$

Vacuum: magneto-dipoleEnergy losses
$$\beta_{\rm R} = \frac{\Omega \times \mathbf{r}}{c}$$
 $W_{\rm tot} = \frac{C}{4\pi} \int (\beta_{\rm R} \mathbf{B}) (\mathbf{B} d \mathbf{S})$ Vacuum (Deusch)1 Ω Ω^3 Ω Ω^3 1 Ω Ω Ω^3 Ω Ω^3 1 Ω Ω^3 1 1 Ω

Vacuum: magneto-dipole
Energy losses
$$\mathcal{B}_{R} = \frac{\Omega \times r}{c}$$
 $W_{tot} = \frac{C}{4\pi} \int (\beta_R \mathbf{B}) (\mathbf{BdS})$ Vacuum (Deusch)11 Ω Ω^3 11 Ω Ω^3 1 Ω^3 1 Ω^3 1 Ψ_{acuum} (L&L) (2/3)1 Ω 1 Ω^3 1 Π Π

X

IMPORTANT CONCLUSION

Two terms can play role in energy losses

$$\mathbf{K} = \frac{R^3}{c} \int \mathbf{J}_{s} \left(\mathbf{B} \mathbf{n} \right) do = \frac{R^3}{4\pi} \int \{ [\mathbf{n} \times \mathbf{B}^{(3)}] (\mathbf{B}^{(0)} \mathbf{n}) + [\mathbf{n} \times \mathbf{B}^{(0)}] (\mathbf{B}^{(3)} \mathbf{n}) \} do$$

STEP #II

Pulsar magnetosphere

Force-free approximation

One can neglect energy of particles

$$\frac{1}{c}\mathbf{j}\times\mathbf{B}+\rho_{\mathrm{e}}\mathbf{E}=0$$

Mestel equation (1973) $\nabla \times \mathbf{\tilde{B}} = \psi \mathbf{B}$

$$\mathbf{\tilde{B}} = \left\{ B_r \left(1 - \frac{\Omega^2 r^2}{c^2} \right), B_{\theta}, B_z \left(1 - \frac{\Omega^2 r^2}{c^2} \right) \right\}$$

Pulsar equation_

$$-\left(1-\frac{\Omega_{\rm F}^2\varpi^2}{c^2}\right)\nabla^2\Psi + \frac{2}{\varpi}\frac{\partial\Psi}{\partial\varpi} - \frac{16\pi^2}{c^2}I\frac{{\rm d}I}{{\rm d}\Psi} + \frac{\varpi^2}{c^2}\left(\nabla\Psi\right)^2\Omega_{\rm F}\frac{{\rm d}\Omega_{\rm F}}{{\rm d}\Psi} = 0$$

(Michel 1973, Mestel 1993, Scharlemann & Wagoner 1973, Okamoto 1974, Mestel & Wang 1979)
First solutions

Orthogonal Rotator – no currents

VB, A.V.Gurevich, Ya.N.Istomin, Sov. Phys. JETP, **58**, 235 (1983)

L.Mestel, P.Panagi, S.Shibata, MNRAS, **309**, 388 (1999)

Orthogonal Rotator – no currents

VB, A.V.Gurevich, Ya.N.Istomin, JETP, **58**, 235 (1983) L.Mestel, P.Panagi, S.Shibata, MNRAS, **309**, 388 (1999)

Equatorial plane

No energy flux through the light cylinder

$$B_{\varphi} \propto (1 - x_r^2)^2$$

Orthogonal Rotator – no currents

VB, A.V.Gurevich, Ya.N.Istomin, JETP, **58**, 235 (1983) L.Mestel, P.Panagi, S.Shibata, MNRAS, **309**, 388 (1999)

No energy flux through the light cylinder

$$B_{\varphi} \propto (1 - x_r^2)^2$$

Spitkovsky solution, $\chi = 60^{\circ}$

VB, YA.N.Istomin, A.A.Philippov, Phys. Uspekhi, 56, 164 (2013)

IMPORTANT CONCLUSION

No energy losses for zero longitudinal current

STEP #III

Current losses

Current losses

For current loss mechanism is necessary to have

Plasma in the magnetosphere, regular poloidal magnetic field, Poynting vector rotation (inductive electric field E, EMF dU), E E longitudinal current I (toroidal magnetic field B). Surface currents $W_{\rm tot} = I\delta U$ \mathbf{J}_{s} Js • FA \otimes Ampere force \mathbf{F}_{A} Braking Neutron

torque **K**

star

Current losses

Orthogonal rotator

VB, A.V.Gurevich, Ya.N.Istomin JETP 58, 235 (1983)

Magnetospheric currents

Oppositely flowing currents can occupy the same open flux tube. Does this have any obervational implications?

There is always a null-current field line in the open zone.

2

IMPORTANT CONCLUSION

$$W_{\rm tot} = I\delta U$$

Direct current losses correspond to first term only

$$\mathbf{K} = \frac{R^3}{c} \int \mathbf{J}_{s} \left(\mathbf{B}\mathbf{n}\right) do = \frac{R^3}{4\pi} \int \{ [\mathbf{n} \times \mathbf{B}^{(3)}] (\mathbf{B}^{(0)}\mathbf{n}) + [\mathbf{n} \times \mathbf{B}^{(0)}] (\mathbf{B}^{(3)}\mathbf{n}) \} do$$

STEP #IV

"Universal solution"

Inclined rotator

A.Spitkovsky, ApJ Lett., 648, L51 (2006)

$$W_{\rm tot}^{\rm (MHD)} \approx \frac{1}{4} \frac{B_0^2 \Omega^4 R^6}{c^2} (1 + \sin^2 \chi) \xrightarrow[1]{B_0} \xrightarrow[1]{B_0}$$

Inclined rotator – numerically

Figure 12. Colour-coded surface distribution of B_i^2 in the split-monopole solution (Bogovalov 1999). The current sheet, in which the radial magnetic field vanishes, describes the orientation of the current sheet in the numerical force-free solutions shown in Fig. 6.

A.Tchekhovskoy, A.Philippov, A.Spitkovsky, MNRAS, 457, 3384 (2016)

I.Contopoulos et al

$$<\!\!B_r > \sim \sin\theta$$
$$<\!\!E\!\!>, <\!\!B_{\varphi} > \sim \sin^2\theta$$

$$W_{\rm tot}(\theta) = \sin^2 \theta B_r^2(\theta)$$

Wind – not a split-monopole

Figure 12. Colour-coded surface distribution of B_r^2 in the split-monopole solution (Bogovalov 1999). The current sheet, in which the radial magnetic field vanishes, describes the orientation of the current sheet in the numerical force-free solutions shown in Fig. 6.

A.Tchekhovskoy, A.Philippov, A.Spitkovsky MNRAS, 457, 3384 (2015)

$$B_r \approx B_0 \frac{R^2}{r^2} \sin \theta \cos(\varphi - \Omega t + \Omega r/c),$$

$$B_{\varphi} = E_{\theta} \approx -B_0 \frac{\Omega R^2}{cr} \sin^2 \theta \cos(\varphi - \Omega t + \Omega r/c).$$

 $W_{\rm tot}(\theta) = \sin^2 \theta B_r^2(\theta)$

Wind – not a split-monopole

C.Kalapotharakos, I.Contopoulos, D.Kazanas, MNRAS, 420, 2793 (2012)

$$B_r \approx B_0 \frac{R^2}{r^2} \sin \theta \cos(\varphi - \Omega t + \Omega r/c),$$

$$B_{\varphi} = E_{\theta} \approx -B_0 \frac{\Omega R^2}{cr} \sin^2 \theta \cos(\varphi - \Omega t + \Omega r/c).$$

Inclined rotator – MHD

- No monopole Michel-Bogovalov poloidal field
- No magneto-dipole radiation

 B_{ϕ}

Larger energy losses for orthogonal rotator

$$W_{\rm tot}^{\rm (MHD)} \approx \frac{1}{4} \frac{B_0^2 \Omega^4 R^6}{c^2} (1 + \sin^2 \chi)$$

• Alignment: inclination angle evolves to 0 deg.

Problem 5.2. Show that the relation similar to (5.24) can be obtained for the conical solutions $\Psi = \Psi(\theta)$, but only at large distances $r \gg R_{\rm L}$ from the compact object. It has the form [Ingraham, 1973, Michel, 1974]

$$4\pi I(\theta) = \Omega_{\rm F}(\theta) \sin \theta \, \frac{\mathrm{d}\Psi}{\mathrm{d}\theta}.\tag{5.25}$$

S.Gralla, T.Jacobson, G.Menon, C.Dermer ($B_p = 0$)

Asymtotic solution for orthogonal wind

$$B_r \approx B_0 \frac{R^2}{r^2} \sin \theta \cos(\varphi - \Omega t + \Omega r/c),$$

$$B_{\varphi} = E_{\theta} \approx -B_0 \frac{\Omega R^2}{cr} \sin^2 \theta \cos(\varphi - \Omega t + \Omega r/c).$$

Radial outflow No current sheet

Asymtotic solution for orthogonal wind

$$B_r \approx B_0 \frac{R^2}{r^2} \sin \theta \cos(\varphi - \Omega t + \Omega r/c),$$

$$B_{\varphi} = E_{\theta} \approx -B_0 \frac{\Omega R^2}{cr} \sin^2 \theta \cos(\varphi - \Omega t + \Omega r/c).$$

Generalization

 $\psi(heta, \varphi - \Omega t + \Omega r/c)$

$$C B_{r} \approx B_{L} \frac{R_{L}^{2}}{r^{2}} \sin \theta \cos \left(\varphi - \Omega t + \frac{\Omega r}{c} + \varphi_{0} \right),$$

$$B_{\theta} \approx \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi},$$

$$B_{\varphi} \approx -B_{L} \frac{\Omega R_{L}^{2}}{cr} \sin^{2} \theta \cos \left(\varphi - \Omega t + \frac{\Omega r}{c} + \varphi_{0} \right) - \frac{1}{r} \frac{\partial \psi}{\partial \theta},$$

$$E_{r} \approx 0,$$

$$E_{\theta} \approx -B_{L} \frac{\Omega R_{L}^{2}}{cr} \sin^{2} \theta \cos \left(\varphi - \Omega t + \frac{\Omega r}{c} + \varphi_{0} \right) - \frac{1}{r} \frac{\partial \psi}{\partial \theta},$$

$$E_{\varphi} \approx -\frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \varphi}.$$

What is the current system?

Current losses

Direct current losses?

$$K_{\parallel} = -c_{\parallel} \frac{B_0^2 \Omega^3 R^6}{c^3} i_{\rm s},$$

$$K_{\perp} = -c_{\perp} \frac{B_0^2 \Omega^3 R^6}{c^3} \left(\frac{\Omega R}{c}\right) i_{\rm a}.$$

Pulsar evolution: direst current losses?

$$I_{\rm r} \dot{\Omega} = K_{\parallel} \cos \chi + K_{\perp} \sin \chi,$$

$$I_{\rm r} \Omega \dot{\chi} = K_{\perp} \cos \chi - K_{\parallel} \sin \chi,$$

$$egin{aligned} K_{\parallel} &= -c_{\parallel} rac{B_0^2 \Omega^3 R^6}{c^3} i_{\mathrm{s}}, \ K_{\perp} &= -c_{\perp} rac{B_0^2 \Omega^3 R^6}{c^3} \left(rac{\Omega R}{c}
ight) i_{\mathrm{a}}. \ K_{\perp}^A &pprox \left(rac{\Omega R}{c}
ight) K_{\parallel}^A \ i_{\mathrm{s}} &pprox i_{\mathrm{a}} &pprox 1 \end{aligned}$$

VB, A.V.Gurevich, Ya.N.Istomin, JETP **58**, 235 (1983)

Pulsar evolution: direst current losses?

$$I_{\rm r} \dot{\Omega} = K_{\parallel} \cos \chi + K_{\perp} \sin \chi,$$

$$I_{\rm r} \Omega \dot{\chi} = K_{\perp} \cos \chi - K_{\parallel} \sin \chi,$$

$$I_{\rm r}\dot{\Omega} = K_{\parallel}^A + [K_{\perp}^A - K_{\parallel}^A]\sin^2\chi,$$

$$I_{\rm r}\Omega\dot{\chi} = [K_{\perp}^A - K_{\parallel}^A]\sin\chi\cos\chi.$$

$$K_{\parallel} = -c_{\parallel} \frac{B_0^2 \Omega^3 R^6}{c^3} i_{\rm s},$$

$$K_{\perp} = -c_{\perp} \frac{B_0^2 \Omega^3 R^6}{c^3} \left(\frac{\Omega R}{c}\right) i_{\rm a}.$$

$$K_{\perp}^A \approx \left(\frac{\Omega R}{c}\right) K_{\parallel}^A$$

$$i_{\rm s} = i_{\rm s}^A \cos \chi,$$

 $i_{\rm a} = i_{\rm a}^A \sin \chi.$

 $i_{\rm s} \approx i_{\rm a} \approx 1$ $i_{\rm A} \sim (\Omega R/c)^{-1}$

Princeton (MHD)

BGI

Pulsar evolution: direst current losses?

$$I_{\rm r} \dot{\Omega} = K_{\parallel} \cos \chi + K_{\perp} \sin \chi,$$

$$I_{\rm r} \Omega \dot{\chi} = K_{\perp} \cos \chi - K_{\parallel} \sin \chi,$$

$$I_{\rm r}\dot{\Omega} = K_{\parallel}^A + [K_{\perp}^A - K_{\parallel}^A]\sin^2\chi,$$

$$I_{\rm r}\Omega\dot{\chi} = [K_{\perp}^A - K_{\parallel}^A]\sin\chi\cos\chi.$$

$$\begin{split} K_{\parallel} &= -c_{\parallel} \frac{B_0^2 \Omega^3 R^6}{c^3} i_{\rm s}, \\ K_{\perp} &= -c_{\perp} \frac{B_0^2 \Omega^3 R^6}{c^3} \left(\frac{\Omega R}{c}\right) i_{\rm a}. \\ K_{\perp}^A \approx \left(\frac{\Omega R}{c}\right) K_{\parallel}^A \\ &i_{\rm s} \approx i_{\rm a} \approx 1 \end{split}$$

$$i_{\rm s} = i_{\rm s}^A \cos \chi,$$

 $i_{\rm a} = i_{\rm a}^A \sin \chi.$

$$i_{\rm A} \sim (\Omega R/c)^{-1}$$

Princeton (MHD)

BGI

How to write down the current

Drift approximation

$$\mathbf{j} = c \,\rho_{\rm e} \frac{[\mathbf{E} \times \mathbf{B}]}{B^2} + a \,\mathbf{B}$$

$$\mathbf{j} =
ho_{\mathrm{e}} \left[\mathbf{\Omega} imes \mathbf{r}
ight] + i_{\parallel} \mathbf{B}$$

$$\mathbf{j} = \frac{(\mathbf{B} \cdot \nabla \times \mathbf{B} - \mathbf{E} \cdot \nabla \times \mathbf{E})\mathbf{B} + (\nabla \cdot \mathbf{E})\mathbf{E} \times \mathbf{B}}{B^2}$$

 $(\nabla i_{\parallel} \mathbf{B}) = 0$

Mestel, BGI

Gruzinov

$$i_{\rm a} \sim \left(\frac{\Omega R}{c}\right)^{-1/2}$$

No point 1

$$B_r \approx B_0 \frac{R^2}{r^2} \sin \theta \cos(\varphi - \Omega t + \Omega r/c),$$

$$B_{\varphi} = E_{\theta} \approx -B_0 \frac{\Omega R^2}{cr} \sin^2 \theta \cos(\varphi - \Omega t + \Omega r/c).$$

In the wind
$$i_{\parallel} = -3 \frac{\Omega}{c} \cos \theta$$

Polar cap
$$i_{\rm a}^{\rm A} \approx f_*^{-1/2} \left(\frac{\Omega R}{c}\right)^{-1/2}$$

Current is too small!

What is the current system?

Current losses

('second term')

$$\mathbf{K} = \frac{R^3}{c} \int \mathbf{J}_{s} \left(\mathbf{B} \mathbf{n} \right) do = \frac{R^3}{4\pi} \int \{ [\mathbf{n} \times \mathbf{B}^{(3)}] (\mathbf{B}^{(0)} \mathbf{n}) + [\mathbf{n} \times \mathbf{B}^{(0)}] (\mathbf{B}^{(3)} \mathbf{n}) \} do$$

3. Additional separatrix current

Point 2?

Mismatch

VB, E.E.Nokhrina. Astron. Letters, 30, 685 (2004)

$$W_{\rm tot} = \frac{\Omega R^3}{c} \int J_{\theta} B_n \mathrm{d}o$$

Direct current losses are the only subject if

- No longitudinal currents in close magnetosphere.
- No additional current

along the separatrix.

$$I_{sep} = 3/4 I_{vol}$$

 $< J_{\theta} > = 0$
 $< B_{t} > = 0$

VB, MHD Flows in Compact Astrophysical Objects, Springer (2010)

$$W_{\rm tot} = \frac{\Omega R^3}{c} \int J_{\theta} B_n {\rm d}o$$

Additional current along the separatrix.

 $i_A = j_1 / \rho_{GI} c$

$$W_{\rm tot} = \frac{\Omega R^3}{c} \int J_{\theta} B_n \mathrm{d}o$$

Direction corresponds to energy losses.

X.-N. Bai, A.Spitkovsky ApJ, **715**, 1282 (2010)

How to check?

Current losses

('second term')

$$\mathbf{K} = \frac{R^3}{c} \int \mathbf{J}_{s} \left(\mathbf{B} \mathbf{n} \right) do = \frac{R^3}{4\pi} \int \{ [\mathbf{n} \times \mathbf{B}^{(3)}] (\mathbf{B}^{(0)} \mathbf{n}) + [\mathbf{n} \times \mathbf{B}^{(0)}] (\mathbf{B}^{(3)} \mathbf{n}) \} do$$

3. Additional separatrix current

How to check?

Current losses

('second term') <u>ALL SURFACE WORKS</u>

$$\mathbf{K} = \frac{R^3}{c} \int \mathbf{J}_{s} \left(\mathbf{B} \mathbf{n} \right) do = \frac{R^3}{4\pi} \int \{ [\mathbf{n} \times \mathbf{B}^{(3)}] (\mathbf{B}^{(0)} \mathbf{n}) + [\mathbf{n} \times \mathbf{B}^{(0)}] (\mathbf{B}^{(3)} \mathbf{n}) \} do$$

3. Additional separatrix current POLAR CAP ONLY
Direct check

VB, A.K.Galishnikova, E.M.Novoselov, A.A.Philippov, M.M.Rashkovetskyi JPhys: Conf. Series, **932**, 012012 (2017)

Direct check

M.M.Rashkovetskyi, VB, A.K.Galishnikova, E.M.Novoselov, A.A.Philippov (2018)

Direct check

M.M.Rashkovetskyi, VB, A.K.Galishnikova, E.M.Novoselov, A.A.Philippov (2018)

$$\frac{I_{\rm sep}}{I_{\rm vol}} = \frac{3}{4} - \frac{2}{f_*^{3/2}} \left(\frac{\Omega R}{c}\right)^{1/2}$$

$$I_{\text{sep}} \sim 0.3 I_{\text{vol}}$$

X.-N. Bai, A.Spitkovsky ApJ 715, 1282 (2010)

$$I_{\rm sep} = 20\% I_{\rm vol}$$

Fortunately for us

$$I_{\rm r}\dot{\Omega} = K_{\parallel}^A + [K_{\perp}^A - K_{\parallel}^A]\sin^2\chi,$$

$$I_{\rm r}\Omega\dot{\chi} = [K_{\perp}^A - K_{\parallel}^A]\sin\chi\cos\chi.$$

One can neglect additional losses for GJ current

BGI correction

Some difference for orthogonal pulsars only

Conclusion

THANKS AGAIN!