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Basic equations /\ PT
Simple analytical model [1/]] ~

Hydrodynamical limit
m axisymmetric (0/0¢ = 0)
m stationary (0/0t = 0)

m ideal (viscosity and heat conduction neglected)



Basic equations /\ PT
Introducing the potential [1/]] -~

Vo x e,

nv, = .
P 2mwrsin6

m V- (nv) = 0 is satisfied automatically.
B dd=nv-dS

B As v- Vo =0, the velocity vectors v are located on the
surfaces ®(r, ) = const.



Basic equations
qua MIPT
Conservation laws -~

V2
E = E(®)=%+wte, (2)
L = L(®)=v,rsind, (3)
s = s(9), (4)

where w is the specific enthalpy, and ¢, is the gravitational
potential.



Basic equations /\ PT
M’ J

We consider s = s(®) = const. Thus, equation for stream function
(no more than Euler equation) looks like (Heyvaerts, 1996):

1 dL dE
2 1 ok 2 4L, 2 2 dE
ka(w2nv ¢)+47r nqu) 47rwnd¢ 0, (5)

where @ = rsin 6.
For spherically symmetric case, i.e., for E(®) = const, L(P) =0,
the solution is: it has the solution

® = ®p(1 — cos 0). (6)



Basic equations /\ PT
Angular operator i -

Angular operator (appears in (5))

A .0 1 0
,Cg = Ssin 9% (m%) , (7)
its eigenfunctions:
@ =1 — cos 0, (8)
Ql = 5in2 97 (9)
Q> =sin’6 cos 6, (10)
. _2"mi(m—-1)! 5,

Qm = W sin© 6 Pm(COS 9), (11)

and eigenvalues
Gm = —m(m+1). (12)



Basic equations /\ PT
Small disturbance mi ~

® = dg[1 — cos 0 + 2f(r,0)], (13)

where ¢ is the small parameter < 1. Equation (5) can be

linearised, while the equation for the perturbation function f(r,6)
is written as:

O*f &2 0. 1 of of
D - D 1 Nr—:
oz ~ 2P+ 1)sinb55( n989)+ or

4722 p? dE
= T Gne(D+ 1)

+47r2n2( ) L dL 472n? cosf
(bg sinf df d% sin? 9

Here D = —1+ ¢2/v?, and N, = 2/r — 47?n?r2GM /3.



Basic equations /\ PT
Solving the equation mi ~

Seeking for solution in the form

o0

f(ra 9) = Z gm(r)Qm(e)- (15)

2
x=—,u=—,l=%7 (16)

where the *-values correspond to the sonic surface. Thus, equation
for radial functions gn,(r)

1
(1 — x*1u?) gl + 2 (; — x2u2) gn + m(m+ 1)x*iPg, =
R?2 R2 (17)
= kmﬁx‘llu4 — )\mr—2u2 — omx®Iut.



Basic equations /\ PT
Expansion coefficients and new variables i -

dE ,
sm9d = e2¢? ZaQO(O) (18)
cosd s
— 1> =2l Z AmQm(6), (19)
sin© 0 —
LAl 5 5 5
S = n;)kam(e). (20)
I(x) and u(x): P(n,s) = A(s)n" ! — | =d4"L.
du u (1 —x3u?)
s J Sl 21
dx x (1 — x*Iu?) (21)
u(x)|x=1=1, (22)
4 vi0o—er
du B 0-6 (23)

dx|._, T+1



Basic equations

Density profile in spherically symmetric case

Normalized density
u=u(x), 1=x<10

° II(X) e

Figure: u(x) in region 1 < x < R/r, =10, T from 1.1 to 5/3



Basic equations /\ PT
Boundary conditions for radial equations i -

vg|r=r = 0 and absense of singularity on sonic surface give

(2m)! (OE)m  (L3/sin26),
2m(m+ 1)m! [ 2 2e22
gm(R/r.) =0, (25)

where (...)m stands for the expansion in terms of the Legendre
polynomials.

52gm(1) =

| e



Solitary curl /\ PT
M’ 3

m quasi-spherical accretion
m small and axisymmetric perturbation (e < 1 and 061 < 1)

m the goal is to find f(r,6) and determine vy and vy velocity
components.



Solitary curl /\
Angular momentum profile MIPT

Q(0) = Qo exp[—a?(1 + cos 6)]. (26)

Qo and a ~ 10 are free parameters of our model. Disturbances of
energy and momentum integrals

Q2 exp[—2a2(1 + cos 0)]R?sin?0
2 )

SEL(0) = (27)

5Ln(0) = Qo exp[—a?(1 + cos 0)]R?sin? 6. (28)
It gives e = QoR/cx.



Solitary curl
Numerical solution for f(r, )

Figure: f(r,0) inregion 1< x<R/r,=10,0<0<7, [ =4/3



Solitary curl /\
Asymptotic solution mMiP1 -~

X K 1:
3 I”(m + 1) —
" / 3r+1)/2 _ 3

Introducing new function y, = gm/(AmR?/r?), Eqn. (29) can be
rewritten as

m(m+1)

" 3.
Ym+ 57 Ymt+ or+1

1
—(3r+1)/2 -3
o X Ym + i O(x>).  (30)

This equation has an universal solution independent of the
boundary conditions on the outer boundary r = R

yix) = (31)



Solitary curl
AM»

:—Z =2V2erm (%)7/2 p(r,0), (32)
where oo
S g1, (r) Qm(8)
p(r,0) = 70 (33)

u(r)sin? 6 exp[—a?(1 + cos 6)]

In our calculation, r,/R = 0.1, |p(r,0)| < 20.
|f(r,0)] <20 —e=10"3.



Solitary curl /\ PT
M’ 3

Figure: |vg/v,| ratio.



Solitary curl

Important conclusion

vy K Vv, around the curl, so we neglect all terms in Navier-Stokes
equations that contain vy.



Solitary curl /\ PT
Simple analytical consideration i -

dve  1ove  vevg V3 19P/86
v A P oth = = : 4
V8r+ver69+ p rcot0 R (34)
2
10P/06
—&cow:——w. (35)
r roop
Expanding near the axis § < 1
L Ko
T rsing - 1 (36)
where K = const, ,
K<6  oP
P7 = g (37)
which gives for the pressure P
pK?
P~ 272 (38)

1

where o™+ is an approximate size of a curl.



A'la Bondi
AM’

V(nv) = 0, (39)
(v-Vv = —va) — Vg, (40)
(v-V)s = 0. (41)

+ polytropic EOS P = P(n,s) = k(s)n"

& = &nr_l, (42)
Mp
2
C
= = 4
w 1 (43)
T = e (44)



A Ia Bondl' M’PT
Conservation laws J \:7

Assuming that v, > v, > vy,

Ve (r,0) = Q(Q)RT2 sinf. (45)

Here Q(6) is a smooth function of € that can be approximately
described as:

) S0, T—al<h<m,
o)~ {0 0<f<m—al (40)
2 2
E0) = e b e ih @)

L) = v¢r5|n9:Q(0)r sin? 0. (48)



A'la Bondi
AM»

Averaging now these integrals in 0 and introducing a new value

L2(0)
2 _
= 49
2= () (49)
we can indite a new equation for averaged energy integral
2 L2
Eu = (B0) = 1 b bog) + 25, (50)

—_————
@eff(r)



A’la Bondi M PT
Determining the importance of angular momentum mi -

Using the total particle flux
® = 4nr’n(r)v,(r) = const, (51)
and the entropy s, one can rewrite the energy integral (50) as

P2 Fk(s)n"1 _GMm N L_gv

E,, = .
W32t T—1 mp, r 2r2

(52)

It gives the following expression for the logarithmic r-derivative of
the number density

w1z
rdn v2r o v2r?
m=_o= r 62’ (53)
145

r

As for Bondi accretion, this derivative has a singularity on the
sonic surface v, = ¢ = Cx.



A'la Bondi M PT
Calculating sonic radius and velocity mi -

This implies that for smooth transition through the sonic surface
r = ry, the additional condition is to be satisfied:
GM n L2,

o 27
c2r,  c2r?

=0. (54)

Solving this equation in terms of r, and assuming that
Lave/(GM) < 1, we find

2 2
o GM (1 4Lavc*>7 (55)

22 \© G2M?

_ 2 12(r —1) 2,2
“ = \5oaree (1+(5_3r)z emz ) (59

where ¢, is evaluated from

o (57)



A'la Bondi M PT
Calculating sonic radius and velocity 2 i -

2 2
Rl 16 L2 (58)
rB (5—3r)2 G2Mm?2
& 12(r —1) 12,2
s T [(5—3r)2 vk (59)

where c.g and r,g correspond to classical Bondi accretion. As we
see, the nonzero angular momentum effectively decreases the

gravitational force.



A’la Shakura-Sunyaev /\ PT
M’ J

® axisymmetric (0/0¢ = 0)
m stationary (0/0t = 0)
m viscous flow (7 = pv = const)



A’la Shakura-Sunyaev
AM»

Again, v, > v, > vy gives (¢-component of Euler eqn.)

ov,  vpvy, 5 Ve

—— = - . 60
" or + r V<v Yo 2sin? e (60)
v = Q(r,0)rsinf, (61)

where we will use the following form for the angular velocity

Q(r,0):
92

Q(r,0) =Q — . 2
(r.6) = olr)esp |~ 5| (62)

Here Qo = Qo(r) is an amplitude, and § = §(r) is an effective
angular width of an individual curl.



A’la Shakura-Sunyaev /\ PT
Convinient form of Euler eqn. mi -

Substituting now v,, into Eqn. (60), we obtain

- d 4nr’n d dQ
M—(Qr?sin0) = — |sin® 60—
dr( resinf) <20 40 [sm dQ}’ (63)
where .
M = 4xr?pv, (64)

is the accretion rate remaining constant in stationary flow. Using
now Eqn. (63), one can show that the total angular momentum of
an individual vortex conserves (dL/dr = 0). Indeed,

dL = pQr?sin® Od¢ sin dOr’dr (65)

can be rewritten as a full #-derivative.



A’la Shakura-Sunyaev /\ PT
Curl deviations with radius mi -

(62) — (63) and expanding in 6

4r2Q Y
T M gy =0, (e0)

ﬂrQo(r) + o(r) 4

27

—18PQ(r) — %ré(r)ﬂo(r) — 10r25(r)Q0(r)—

M s 3M oy M ey -

27mrd (r)Qo(r) + 47T77r 0" (r)Qo(r) 4m]r 0°(r)Q(r) =0,

(67)
that has simple solutions
(1) = b + ST 1), (68)
M
ro\o [8mn(ro —r) ]_2

Qo(r) = (=) | ————=+1 . 69
o(r) = (27 | FTL (69



A’la Shakura-Sunyaev
AM»

8
T « 1. (70)
M
Introducing Reynolds number as
/
Re =PV, (71)
n

where p, v and | are characteristic values of a flow and 7 is a
dynamical viscosity, we can transform it using expression (64) and
get

Re (72)

- 4ron



A’la Shakura-Sunyaev /\ PT
Dense turbulent celluar structure i -~

62 a?

Q(r,0) = Qo(r) exp(— 555 )(1 = 55367), (73)
where parameter « is chosen from the condition on total angular
momentum

/ dL =0, (74)
<R

which is equivalent to

/ dfsin®0Q(r,0) = 0. (75)
0



A’la Shakura-Sunyaev

Q(0) profile realisation

The angular profile of Q(r, 6), OSQSI'I/30‘

2,=F(0)

Q/Q

Figure: Ratio Q/Qq = F(6), 0 <60 < 7/30



A’la Shakura-Sunyaev /\ PT
Curl amplitude dependence on radius i -

Qo(r) = Qo (r_;)>2 exp [16;\77%( - r)] (76)

According to classical prediction of Shakura and Sunyaev, we set
kinematical viscosity as

2¢2
V = COsleurl Veurl =~ assroé QO- (77)
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