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Basic equations
Simple analytical model

Hydrodynamical limit

axisymmetric (∂/∂φ = 0)

stationary (∂/∂t = 0)

ideal (viscosity and heat conduction neglected)



Basic equations
Introducing the potential

nvp =
∇Φ× eϕ
2πr sin θ

. (1)

∇ · (nv) = 0 is satisfied automatically.

dΦ = nv · dS
As v · ∇Φ = 0, the velocity vectors v are located on the
surfaces Φ(r , θ) = const.



Basic equations
Conservation laws

E = E (Φ) =
v2

2
+ w + ϕg, (2)

L = L(Φ) = vϕr sin θ, (3)

s = s(Φ), (4)

where w is the specific enthalpy, and ϕg is the gravitational
potential.



Basic equations
Simplification

We consider s = s(Φ) = const. Thus, equation for stream function
(no more than Euler equation) looks like (Heyvaerts, 1996):

$2∇k

(
1

$2n
∇kΦ

)
+ 4π2nL

dL

dΦ
− 4π2$2n

dE

dΦ
= 0, (5)

where $ = r sin θ.
For spherically symmetric case, i.e., for E (Φ) = const, L(Φ) = 0,
the solution is: it has the solution

Φ = Φ0(1− cos θ). (6)



Basic equations
Angular operator

Angular operator (appears in (5))

L̂θ = sin θ
∂

∂θ

(
1

sin θ

∂

∂θ

)
, (7)

its eigenfunctions:

Q0 = 1− cos θ, (8)

Q1 = sin2 θ, (9)

Q2 = sin2 θ cos θ, (10)

. . .

Qm =
2mm!(m − 1)!

(2m)!
sin2 θ P ′m(cos θ), (11)

and eigenvalues
qm = −m(m + 1). (12)



Basic equations
Small disturbance

Φ = Φ0[1− cos θ + ε2f (r , θ)], (13)

where ε is the small parameter � 1. Equation (5) can be
linearised, while the equation for the perturbation function f (r , θ)
is written as:

−ε2D
∂2f

∂r2
− ε2

r2
(D + 1) sin θ

∂

∂θ
(

1

sin θ

∂f

∂θ
) + ε2Nr

∂f

∂r
=

= −4π2n2r2

Φ2
0

sin θ(D + 1)
dE

dθ

+
4π2n2

Φ2
0

(D + 1)
L

sin θ

dL

dθ
− 4π2n2

Φ2
0

cos θ

sin2 θ
L2.

(14)

Here D = −1 + c2
s /v

2, and Nr = 2/r − 4π2n2r2GM/Φ2
0.



Basic equations
Solving the equation

Seeking for solution in the form

f (r , θ) =
∞∑

m=0

gm(r)Qm(θ). (15)

Introducing dimensionless variables

x =
r

r∗
, u =

n

n∗
, l =

c2
s

c2
∗
, (16)

where the ∗-values correspond to the sonic surface. Thus, equation
for radial functions gm(r)

(1− x4lu2)g ′′m + 2

(
1

x
− x2u2

)
g ′m + m(m + 1)x2lu2gm =

= km
R2

r2
∗
x4lu4 − λm

R2

r2
∗
u2 − σmx6lu4.

(17)



Basic equations
Expansion coefficients and new variables

sin θ
dE

dθ
= ε2c2

∗

∞∑
m=0

σmQm(θ), (18)

cos θ

sin2 θ
L2 = ε2c2

∗ r
2
∗

∞∑
m=0

λmQm(θ), (19)

L

sin θ

dL

dθ
= ε2c2

∗ r
2
∗

∞∑
m=0

kmQm(θ). (20)

l(x) and u(x): P(n, s) = A(s)nΓ−1 → l = uΓ−1.

du

dx
= −2

u

x

(1− x3u2)

(1− x4lu2)
(21)

u(x)|x=1 = 1, (22)

du

dx

∣∣∣∣
x=1

= −4−
√

10− 6Γ

Γ + 1
. (23)



Basic equations
Density profile in spherically symmetric case

Figure: u(x) in region 1 ≤ x ≤ R/r∗ = 10, Γ from 1.1 to 5/3



Basic equations
Boundary conditions for radial equations

vθ|r=R = 0 and absense of singularity on sonic surface give

ε2gm(1) =
(2m)!

2m(m + 1)m!

[
(δEn)m

c2
∗
− (L2

n/ sin2 θ)m
2c2
∗ r

2
∗

]
, (24)

g ′m(R/r∗) = 0, (25)

where (...)m stands for the expansion in terms of the Legendre
polynomials.



Solitary curl
Approach

quasi-spherical accretion

small and axisymmetric perturbation (ε� 1 and δθcurl � 1)

the goal is to find f (r , θ) and determine vθ and vφ velocity
components.



Solitary curl
Angular momentum profile

Ω(θ) = Ω0 exp[−α2(1 + cos θ)]. (26)

Ω0 and α ' 10 are free parameters of our model. Disturbances of
energy and momentum integrals

δEn(θ) =
Ω2

0 exp[−2α2(1 + cos θ)]R2 sin2 θ

2
, (27)

δLn(θ) = Ω0 exp[−α2(1 + cos θ)]R2 sin2 θ. (28)

It gives ε = Ω0R/c∗.



Solitary curl
Numerical solution for f (r , θ)

Figure: f (r , θ) in region 1 ≤ x ≤ R/r∗ = 10, 0 ≤ θ ≤ π, Γ = 4/3



Solitary curl
Asymptotic solution

x � 1:

g ′′m+
3

2x
g ′m+

m(m + 1)

2Γ+1
x−(3Γ+1)/2gm+λm

R2

r2
∗

1

4x3
= O(x−3). (29)

Introducing new function ym = gm/(λmR
2/r2
∗ ), Eqn. (29) can be

rewritten as

y ′′m +
3

2x
y ′m +

m(m + 1)

2Γ+1
x−(3Γ+1)/2ym +

1

4x3
= O(x−3). (30)

This equation has an universal solution independent of the
boundary conditions on the outer boundary r = R

y(x) = −8

x
. (31)



Solitary curl
vθ/vϕ ratio

vθ
vϕ

= 2
√

2 επ
( r∗
R

)7/2
p(r , θ), (32)

where

p(r , θ) =

∞∑
m=0

g ′m(r)Qm(θ)

u(r) sin2 θ exp[−α2(1 + cos θ)]
. (33)

In our calculation, r∗/R = 0.1, |p(r , θ)| < 20.
|f (r , θ)| < 20→ ε = 10−3.



Solitary curl
vθ/vϕ ratio profile

Figure: |vθ/vϕ| ratio.



Solitary curl
Important conclusion

vθ � vϕ around the curl, so we neglect all terms in Navier-Stokes
equations that contain vθ.



Solitary curl
Simple analytical consideration

vr
∂vθ
∂r

+ vθ
1

r

∂vθ
∂θ

+
vrvθ
r
−

v2
ϕ

r
cot θ = −1

r

∂P/∂θ

ρ
. (34)

−
v2
ϕ

r
cot θ = −1

r

∂P/∂θ

ρ
. (35)

Expanding near the axis θ � 1

vϕ =
L

r sin θ
=

Kθ

r
, (36)

where K = const,

ρ
K 2θ

r2
=
∂P

∂θ
, (37)

which gives for the pressure P

P ∼ ρK 2

α2r2
, (38)

where α−1 is an approximate size of a curl.



A’la Bondi
Equations

∇(nv) = 0, (39)

(v · ∇)v = −∇P
ρ
−∇ϕg, (40)

(v · ∇)s = 0. (41)

+ polytropic EOS P = P(n, s) = k(s)nΓ

c2
s =

Γk

mp
nΓ−1, (42)

w =
c2
s

Γ− 1
, (43)

T =
mp

Γ
c2
s . (44)



A’la Bondi
Conservation laws

Assuming that vr � vϕ � vθ,

vϕ(r , θ) = Ω(θ)
R2

r
sin θ. (45)

Here Ω(θ) is a smooth function of θ that can be approximately
described as:

Ω(θ) ≈

{
Ω0, π − α−1 < θ < π,

0 0 < θ < π − α−1.
(46)

E (θ) =
v2
r (r)

2
+ ω(r) + ϕg(r) +

L2(θ)

2r2 sin2 θ
, (47)

L(θ) = vϕr sin θ = Ω(θ)r2 sin2 θ. (48)



A’la Bondi
Averaging in θ

Averaging now these integrals in θ and introducing a new value

L2
av ≡ 〈

L2(θ)

sin2 θ
〉 (49)

we can indite a new equation for averaged energy integral

Eav ≡ 〈En(θ)〉 =
v2
r (r)

2
+ ω(r) + ϕg(r) +

L2
av

2r2︸ ︷︷ ︸
ϕeff(r)

, (50)



A’la Bondi
Determining the importance of angular momentum

Using the total particle flux

Φ = 4πr2n(r)vr (r) = const, (51)

and the entropy s, one can rewrite the energy integral (50) as

Eav =
Φ2

32π2n2r4
+

Γk(s)

Γ− 1

nΓ−1

mp
− GM

r
+

L2
av

2r2
. (52)

It gives the following expression for the logarithmic r -derivative of
the number density

η1 =
r

n

dn

dr
=

2− GM

v2
r r

+
L2
av

v2
r r

2

−1 +
c2
s

v2
r

. (53)

As for Bondi accretion, this derivative has a singularity on the
sonic surface vr = cs = c∗.



A’la Bondi
Calculating sonic radius and velocity

This implies that for smooth transition through the sonic surface
r = r∗, the additional condition is to be satisfied:

2− GM

c2
∗ r∗

+
L2
av

c2
∗ r

2
∗

= 0. (54)

Solving this equation in terms of r∗ and assuming that
Lavc∗/(GM)� 1, we find

r∗ =
GM

2c2
∗

(
1− 4L2

avc
2
∗

G 2M2

)
, (55)

c∗ =

√
2

5− 3Γ
c∞

(
1 +

12(Γ− 1)

(5− 3Γ)2

L2
avc

2
∞

G 2M2

)
, (56)

where c∞ is evaluated from

Eav =
c2
∞

Γ− 1
. (57)



A’la Bondi
Calculating sonic radius and velocity 2

r∗
r∗B

= 1−
[

16

(5− 3Γ)2

L2
avc

2
∞

G 2M2

]
(58)

c∗
c∗B

= 1 +

[
12(Γ− 1)

(5− 3Γ)2

L2
avc

2
∞

G 2M2

]
, (59)

where c∗B and r∗B correspond to classical Bondi accretion. As we
see, the nonzero angular momentum effectively decreases the
gravitational force.



A’la Shakura-Sunyaev
Introducing viscosity

axisymmetric (∂/∂φ = 0)

stationary (∂/∂t = 0)

viscous flow (η = ρν = const)



A’la Shakura-Sunyaev
Equations

Again, vr � vϕ � vθ gives (φ-component of Euler eqn.)

vr
∂vϕ
∂r

+
vrvϕ
r

= ν

(
∇2vϕ −

vϕ

r2 sin2 θ

)
. (60)

vϕ = Ω(r , θ)r sin θ, (61)

where we will use the following form for the angular velocity
Ω(r , θ):

Ω(r , θ) = Ω0(r) exp

[
− θ2

2δ(r)

]
. (62)

Here Ω0 = Ω0(r) is an amplitude, and δ = δ(r) is an effective
angular width of an individual curl.



A’la Shakura-Sunyaev
Convinient form of Euler eqn.

Substituting now vϕ into Eqn. (60), we obtain

Ṁ
d

dr
(Ωr2 sin θ) =

4πr2η

sin2 θ

d

dθ

[
sin3 θ

dΩ

dθ

]
, (63)

where
Ṁ = 4πr2ρvr (64)

is the accretion rate remaining constant in stationary flow. Using
now Eqn. (63), one can show that the total angular momentum of
an individual vortex conserves (dL/dr = 0). Indeed,

dL = ρΩr2 sin2 θdφ sin θdθr2dr (65)

can be rewritten as a full θ-derivative.



A’la Shakura-Sunyaev
Curl deviations with radius

(62)→ (63) and expanding in θ

Ṁ

2πη
rΩ0(r) +

4r2Ω0(r)

δ(r)
+

Ṁ

4πη
r2Ω′0(r) = 0, (66)

−18r2Ω0(r)− 3Ṁ

2πη
rδ(r)Ω0(r)− 10r2δ(r)Ω0(r)−

Ṁ

2πη
rδ2(r)Ω0(r) +

3Ṁ

4πη
r2δ′(r)Ω0(r)− Ṁ

4πη
r2δ2(r)Ω′0(r) = 0,

(67)

that has simple solutions

δ(r) = δ0 +
8πη(r0 − r)

Ṁ
, (68)

Ω0(r) = Ω0(
r0
r

)2

[
8πη(r0 − r)

Ṁδ0

+ 1

]−2

. (69)



A’la Shakura-Sunyaev
Small parameter

8πηr0

Ṁ
� 1. (70)

Introducing Reynolds number as

Re =
ρvl

η
, (71)

where ρ, v and l are characteristic values of a flow and η is a
dynamical viscosity, we can transform it using expression (64) and
get

Re =
Ṁ

4πr0η
� 1. (72)



A’la Shakura-Sunyaev
Dense turbulent celluar structure

Ω(r , θ) = Ω0(r) exp(− θ2

2δ2
)(1− α2

2δ2
θ2), (73)

where parameter α is chosen from the condition on total angular
momentum ∫

|~r |≤R
dL = 0, (74)

which is equivalent to∫ π

0
dθ sin3 θΩ(r , θ) = 0. (75)



A’la Shakura-Sunyaev
Ω(θ) profile realisation

Figure: Ratio Ω/Ω0 = F (θ), 0 ≤ θ ≤ π/30



A’la Shakura-Sunyaev
Curl amplitude dependence on radius

Ω0(r) = Ω0

( r0
r

)2
exp

[
16πη

Ṁ

(1 + α2)

δ2
(r0 − r)

]
. (76)

According to classical prediction of Shakura and Sunyaev, we set
kinematical viscosity as

ν = αssrcurlvcurl ≈ αssr
2
0 δ

2Ω0. (77)
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