БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ФИЗИЧЕСКИЙ ИНСТИТУТ ИМЕНИ П.Н.Лебедева Российской академии наук

И

Φ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ

Статистика интеримпульсных пульсаров – ключ к решению поблемы их эволюции

Арзамасский Л.И., Бескин В.С., <u>Дерри С.Т</u>.

Принстонский Университет Физический институт им. П.Н. Лебедева РАН Московский Физико-Технический Институт

Введение

Спустя почти 50 лет после открытия радиопульсаров вопрос об их эволюции все еще остается открытым. Так, до сих пор не ясно, как меняется угол χ между магнитным моментом нейтронной звезды и ее осью вращения. Имеются как теории, в которых угол наклона приближается к 90°, так и теории, предсказывающие эволюцию к соосному состоянию. В этой работе показано, что интеримпульсные пульсары позволяют определить направление эволюции угла χ , поскольку интеримпульс возникает либо в результате наблюдения противоположных магнитных полюсов (тогда угол близок к 90°), либо в результате наблюдения одного и того же полюса (тогда угол близок к 0°). Поэтому статистические свойства таких пульсаров могут пролить свет и на режим торможения нейтронных звезд.

Статистика интеримпульсных пульсаров

Интеримпульсные пульсары дают нам возможность оценить угол наклона осей χ , т.к.

Двухполюсные интеримпульсные пульсары

Для DP пульсаров ситуация усложняется отсутствием модели диаграммы направленности при углах наклона χ , близких к 90 градусам. В этом случае линия нулевой гольдрайховской плотности пересекает диаграмму, поэтому число DP пульсаров должно быть меньше простейшей оценки $|180 - \chi - \eta|_{DP} \le W_0/\sqrt{P}$. Поэтому в этой работе будут рассмотрены лишь соосные интеримпульсные пульсары.

Кинетическое уравнение

Распределение радиопульсаров по углу наклона осей χ (от которого зависит число интеримпульсных пульсаров) может быть определена из решения кинетического уравнения $\frac{\partial}{\partial P}(\dot{P}N) + \frac{\partial}{\partial \chi}(\dot{\chi}N) = Q$

где функция рождения Q зависит от угла наклона χ и начального периода P. В этой работе мы рассматриваем две модели эволюции, а именно BGI модель [3], которая предсказывает увеличение угла наклона χ , так и МГД модель [4], в которой угол эволюционирует к 0 градусов. В рамках этих моделей законы эволюции задаются спедующими уравнениями

интеримпульс возникает либо в результате наблюдения противоположных полюсов $(DP - угол близок к 90^\circ)$, либо в результате наблюдения одного и того же полюса $(SP - угол близок к 0^\circ)$. наиболее полные выборки интеримпульсных пульсаров собраны в работах [1]-[2]. Однако, многие пульсары в них отнесены к разным классам. Мы провели собственный анализ, который в целом совпал с результатами работы [1]. В Табл. 1 пульсары рассортированы по четырем бинам в предположении, что все неопределенные пульсары принадлежат данному классу. А в Табл. 2-3 мы отдельно выделили строчку с теми SP пульсарами, для которых в определении класса у нас нет сомнений. Мы видим, что в любом случае большинство интеримпульсных пульсаров имеют малые периоды P, т. е. они достаточно молодые. Поэтому мы в дальнейшем не будем обсуждать эволюцию магнитного поля.

	0.1-0.4c	0.4-0.7c	0.7-1c	>1c
DP	22	6	2	2
SP	15	2	2	2

Табл. 1. Распределение интеримпульсных пульсаров по периодам Р.

Однополюсные интеримпульсные пульсары

Для соосных интеримпульсных пульсаров можно сделать простую оценку угла наклона осей χ . При малых углах χ диаграмма направленности и траектория линии зрения приблизительно лежат в одной плоскости, так что угол χ можно оценить по значению разности времен прихода импульса и интеримпульса η , которое известно из наблюдений (см. рис. 2). При этом предполагается, что излучение возникает в малой области рядом с границей диаграммы. На рисунке 1 показаны SP пульсары на диаграмме угол – период, с углом, определенным таким образом. Видно, что их число сильно падает с периодом, что находится в полном согласии с BGI моделью. Однако такая оценка угла наклона является оценкой сверху. Излучение может возникать не только рядом с границей диаграммы направленности. Если предположить, что импульсы возникают в произвольных точках диаграммы, то для возникн $(|\chi + \xi| \le W_0/\sqrt{P}$ теримпульса необходимо, чтобы $\eta = 2\pi$. Это соответствует условию и является оценкой снизу для угал наклона. Истинный угол лежит между значениями, полученными этими способами.

ВGI
$$\dot{P}_{-15} = B_{12}^{10/7} (\cos \chi)^{2d}$$
 МГД $\dot{P} \propto B_{12}^2 P^{-1} (1 + \sin^2 \chi)$
 $\dot{\chi}_{-15} = P^{-1} B_{12}^{10/7} (\cos \chi)^{2d-1} \sin \chi$ $\dot{\chi} \propto B_{12}^2 P^{-2} \sin \chi \cos \chi$
 $I(P, \chi) = P/\sin \chi$ $I(P, \chi) = P \sin \chi/\cos^2 \chi$

Здесь представлены также интегралы движения *I*, благодаря которым кинетическое уравнение может быть легко проинтегрировано. Далее, для функции распределения по начальным углам были рассмотрены две модели, а именно модель случайной ориентации магнитной оси относительно оси вращения $Q_{\chi} = \sin \chi$, а также равномерное распределение $Q_{\chi} = 2/\pi$. В результате, для BGI- модели функции распределения в этих двух случаях имеют вид

$$N(P,\chi) = k \frac{\chi - \sin\chi \cos\chi}{\sin^2\chi \cos^{2d-1}\chi} PQ_P \quad N(P,\chi) = k \frac{1 - \cos\chi}{\sin^2\chi \cos^{2d-1}\chi} PQ_P$$

Соответственно, для МГД модели имеем

$$N(P,\chi) = k \frac{\frac{\pi}{2} - \chi - \sin\chi \cos\chi}{\cos^{3}\chi} P^{2}Q_{P} \qquad N(P,\chi) = k \frac{\frac{1}{2} \ln \frac{1 + \cos\chi}{1 - \cos\chi} - \cos\chi}{\cos^{3}\chi} P^{2}Q_{P}$$

Считая теперь для простоты, что функция рождения Q_p по начальным периодам равномерна, т.е. $Q_p \sim \text{const}$ (что по-видимому можно считать справедливым для пульсаров с малыми периодами), можно оценить число SP интеримпульсных пульсаров. Как показано в Табл. 2, для равномерного распределения по начальным углам полное число соосных интеримпульсных пульсаров находятся в хорошем согласии с данными наблюдений. другой стороны, модель случайной ориентации противоречит обеим моделям эволюции (см. Табл. 3).

Сравнение с наблюдениями

Для более детального сравнения предсказаний теории с данными наблюдений мы рассмотрели полученные выше аналитические решения, а также учитывали как функцию видимости, связанную как с геометрическим фактором (наблюдатель должен попадать в диаграмму направленности, см. условия на углы в пунктах про SP и DP пульсары), так и функцию видимости, связанную с конечной чувствительностью приборов (мы не видим слабых

Рис.1. На графике показаны наблюдаемые SP пульсары, распределенные по периодам и дальнейшая эволюция углов полярной оси. Красным обозначена эволюция пульсаров согласно модели BGI (угол эволюционирует к 90 градусам), синим — согласно МГД модели (к 0 градусов).

Рис.2. График, показывающий пересечение диаграммы направленности (оранжевая линия) с лучом зрения (синяя линия). Если излучение возникает на границе диаграммы направленности, то расстояние между импульсом и интеримпульсом равно 2 η . По результатам его наблюдений можно определить верхнюю границу угла наклона.

	0.1-0.4 c	0,4-0,7 c	0,7-1 c	>1 c
SP	5	-	1	1
SP (все)	15	2	2	2
BGI (MC)	12	2	1	1
BGI (KE)	10	4	2	0
MHD (MC)	9	7	6	5
MHD (KE)	7	5	4	3

далеких объектов). Предсказания теории сведены в Табл. 2. Как мы видим, наблюдаемое резкое спадание числа пульсаров в трех последних бинах лучше соответствует модели BGI. Как показано на Рис. 1, так и должно быть, поскольку в этой модели пульсары при увеличении периода покидают область интеримпульс-ных пульсаров (красные штриховые линии), тогда как в модели MHD (синие линии) все пульсары, родившиеся в области SP-интеримпульсных пульсаров, остаются в этой области и в дальнейшем. Этот вывод согласуется и с результатами, полученным нами методом Монте-Карло. Ниже представлены и другие рисунки, показывающие согласованность MC симуляций и решений кинетического уравнения.

Рис.3. Сгенерированные магнитные поля (фиолетовый) и наблюдаемые магнитные поля (синий). В этом случае наблюдается хорошее совпадение с наблюдаемыми данными

Табл. 2. Сравнение результатов, полученных путем решения кинетического уравнения (КЕ) и Монте-Карло симуляций (МС) для SP пульсаров и равномерного начального распределения по углу $Q_{y} = 2/\pi$.

	0.1-0.4 c	0,4-0,7 c	0,7-1 c	>1 c
SP	5	-	1	1
SP(все)	15	2	2	2
BGI (KE)	1	0	0	0
MHD (KE)	7	5	4	3

Табл. 3. Сравнение результатов, полученных путем решения кинетического уравнения (КЕ) для SP пульсаров и для случайного начального распределения по углу $Q_{_{\chi}}$ = sin χ .

0.06

0.05

<u>o</u> 0.04

(фиолетовый) с аналитическим решением (красный). Большое отличие при больших периодах связано с конечным временем интегрирования.

Рис. 7. Сравнение начальных распределений по периодам для моделей МГД (синий) и BGI (фиолетовый) Рис 8. Полярная шапка для почти ортогонального ротатора. Генерация вторичной плазмы невозможна ни вблизи магнитного полюса, ни вблизи линии, где гольдраqховская плотность обращается в ноль [5].

Выводы

Показано, что модель торможения BGI [1], предсказывающая увеличение угла наклона пульсара, для однородной функции	Литература
рождения по начальным углам наклона также хорошо описывает распределение осесимметричных интеримпульсных	[1] Maciesiak K., GilJ., Ribero V.A.R.M MNRAS, 414, 1314 (2011)
пульсаров SP, как и МГД модель [2], хотя резкое спадание числа пульсаров в двух последних бинах больше соответствует	[2] Малов И.Ф., Никитина Е.Б. АЖ, 88, 954 (2011)
первой модели. С другой стороны, модель случайной ориентации противоречит обоим моделям эволюции. Что же касается	[3] Beskin V.S., GurevichA.V. Istomin Ya.N. Physics of the pulsar magnetosphere.
	(Cambridge University Press, Cambridge 1993)
ортогональных интеримпульсных пульсаров DP, то их число сильно зависит от (очень плохо определяемой в этом случае)	[4] Philippov A., TchekhovskoyA., Li J.G., MNRAS, 441, 1879 (2014)
диаграммы направленности (см. Рис. 8). Поэтому их анализ требует дополнительного исследования.	[5] Beskin V.S., Hakobian H.L. MNRAS (in preparation)