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A B S T R A C T 

A detailed study of the refraction of an ordinary wave in the magnetosphere of radio pulsars was carried out. For this, a consistent 
theory of the generation of secondary particles was constructed, which essentially takes into account the dependence of the 
number density and the energy spectrum of secondary particles on the distance from the magnetic axis. This made it possible 
to determine with high accuracy the refraction of the ordinary O-mode in the central region of the outflowing plasma, which 

makes it possible to explain the central peak of three-humped mean radio profiles. As shown by detailed numerical calculations, 
in most cases it is possible to reproduce quite well the observed mean profiles of radio pulsars. 
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 I N T RO D U C T I O N  

ver the past 50 yrs, a huge amount of observational data has
een accumulated on the mean profiles of the pulsar radio emission
Lyne & Manchester 1988 ; Weltevrede & Johnston 2008 ; Hankins 
 Rankin 2010 ). So far in many studies, the analysis of the mean

rofiles was carried out within the framework of the Rotation Vector 
odel (RVM, so-called hollow cone model; Radhakrishnan & Cooke 

969 ; Oster & Sieber 1976 ), in which, in particular, rectilinear wave
ropagation in the magnetosphere of a neutron star was assumed. In
his case, it is also usually supposed that the polarization properties 
f radiation are determined by the structure of the magnetic field in
he generation region. 

It is clear that within the framework of such a simplified model,
any properties of the mean profiles cannot be e xplained. F or this

eason, the hollow cone model has undergone significant modifica- 
ions (see e.g. Shitov 1983 ; Blaskiewicz, Cordes & Wasserman 1991 ;
yks 2008 ; Rookyard, Weltevrede & Johnston 2015 ). One of them

s related to the effects of wave propagation in the magnetosphere of
adio pulsars which can affect the formation of mean profiles. These 
nclude the effects of refraction (Barnard & Arons 1986 ; Beskin,
urevich & Istomin 1988 ), cyclotron absorption, which can reduce 

he intensity in different phases φ (Mikhailovskii et al. 1982 ; Kennett, 
elrose & Luo 2000 ; Melrose & Luo 2004 ), as well as the effects

f limiting polarization (Cheng & Ruderman 1979 ; Barnard 1986 ; 
etro va 2006 ; Andriano v & Beskin 2010 ; Wang, Lai & Han 2010 ;
eskin & Philippov 2012 ; W ang, W ang & Han 2014 ; Hakobyan,
eskin & Philippov 2017 ). 
One of these unsolved problems is the question of the so-called 

riple pulsars, i.e. pulsars with a three-humped mean profiles. For 
ome of them, shown in Table 1 , linear and circular polarization
nambiguously indicates that the mean profile is formed by only one 
rthogonal mode. This follows from the fact that for these pulsars
he position angle p . a . of the linear polarization is well defined, and
 E-mail: beskin@lpi.ru 
n
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he y hav e different signs of circular polarization V and the deri v ati ve
 p . a ./d φ (Andrianov & Beskin 2010 ; Beskin & Philippov 2012 ). For
he sake of completeness, the table also includes pulsars for which
he formation of a mean pulse by one single mode is questionable.
t is clear that such a triple-peak behaviour is difficult to explain in
erms of the standard hollow cone model. 

Here, ho we ver, it is important for us to emphasize the following.
mong the pulsars collected in the table, there are five objects in
hich the average profile is formed by the ordinary O-mode only.
herein, as we can see, for all these pulsars the position angle
ithin the mean profile changes by an amount of the order of
80 ◦. Therefore, it can be assumed that the formation of the mean
rofile in these pulsars is associated with the refraction of the O-
ode for central passage of the line of sight through the directivity

attern. 
Another fact speaks in fa v our of this interpretation. All of these

ve pulsars have parameter Q = 2 P 

1 . 1 Ṗ 

−0 . 4 
−15 greater than unity. Here

 is pulsar period in seconds, and Ṗ −15 = 10 15 Ṗ is its deri v ati ve.
s was shown by Beskin, Gurevich & Istomin ( 1993 ), this implies

hat all these pulsars are located near so-called ‘death line’ on
he P − Ṗ diagram. Hence, for these pulsars, in the centre of
he directivity pattern one should expect a significant decrease in 
he radiation intensity associated with a decrease in the number 
ensity of the emitting plasma (Ruderman & Sutherland 1975 ). And
his, in turn, can significantly affect the refraction of the ordinary
ode. 
In this paper, we discuss in detail the influence of ordinary wave

efraction on the formation of the mean profile of the pulsar radio
mission. At present, the theory of refraction of the ordinary O-
ode in the magnetosphere of radio pulsars has been developed in

ufficient detail. Back in 80s, Barnard & Arons ( 1986 ) showed that
n very strong neutron star magnetic field B ∼ 10 12 G the refractive
ndex can be written as 

 2 ≈ 1 + 

θ2 
b 

4 
−

( 

< 

ω 

2 
pe 

γ 3 ω 

2 
> + 

θ4 
b 

16 

) 1 / 2 

. (1) 
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M

Table 1. Pulsars with triple mean profiles taken from Rankin ( 1990 ). Position 
angle changes � p . a . and inclination angles χ are taken from Lyne & 

Manchester ( 1988 ). Five triple pulsars are definitely associated with O-mode 
only. 

PSR P (s) Ṗ −15 � p . a . ( ◦) χ ( ◦) Q mode 

B0329 + 54 0.71 2.05 180 30 1.0 O 

B1055 −52 0.20 5.84 90 – 0.2 X 

B1237 + 25 1.38 0.96 180 48 2.9 O,X 

B1508 + 55 0.74 5.00 180 80 0.8 O,X 

B1600 −49 0.33 1.02 180 – 0.6 O,X? 
B1700 −32 1.21 0.66 180 47 2.9 O 

B1804 −08 0.16 0.03 180 47 1.1 O 

B1821 + 05 0.75 0.23 90 28 2.6 O,X? 
B2003 −08 0.58 0.05 90 13 3.6 O,X? 
B2045 −16 1.96 10.96 180 37 1.6 O 

B2111 + 46 1.01 0.71 180 9 2.3 O 

B2319 + 60 2.26 7.04 90 19 2.2 X? 
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Figure 1. Lorentz-factor γ = E e /m e c 
2 of a particle accelerated from the 

surface of a neutron star obtained by solving equation ( 35 ) for two values of 
the pulsar period P for small ( Q < 1, top) and large ( Q > 1, bottom) parameter 
Q . 
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ere ω pe = (4 πe 2 n e / m e ) 1/2 is the electron plasma frequency, θb is the
ngle between wave vector k and external magnetic field B , and γ
s the Lorentz-factor of outflowing plasma. Recently, Mikhaylenko,
eskin & Istomin ( 2021 ) have shown that, for superluminal O-mode,

he averaging < . . . > o v er particle energies remains valid for a fairly
ide particle energy distribution (when it is necessary to take care
utting v = c in the expression ω − kv ). 
It is clear that the refraction of an ordinary wave substantially

epends on the transverse profile of the number density n e . In what
ollows, we write it down in the form 

 e = λ g( r ⊥ 

, ϕ m 

) n GJ , (2) 

here r ⊥ 

and ϕ m are magnetic polar coordinates at the star surface.
ere 

 GJ = 

| �B | 
2 πce 

(3) 

s the Goldreich & Julian ( 1969 ) number density giving diminishing
 GJ ∝ r −3 via decreasing of the magnetic field B , λ = constant is
he multiplicity, and the profile g ( r ⊥ 

, ϕ m ) determines the transverse
istribution of the number density. Wherein, we assume that ∫ 

g( r ⊥ 

, ϕ m 

) r ⊥ 

d r ⊥ 

d ϕ m 

= πR 

2 
0 . (4) 

n the other hand, for the process of generation of secondary
articles produced by one primary particle, we will also determine
heir number by the quantity λ, which in this case we will call the

ultiplication parameter. 
It must be said that both in the original (Barnard & Arons 1986 ) and

n many subsequent (Beskin et al. 1988 ; Hakobyan & Beskin 2014 )
orks devoted to refraction of the ordinary O-mode, the simplest case
 ( r ⊥ 

, ϕ m ) = constant was considered. The first results on the influence
f a strong dependence g ( r ⊥ 

) on r ⊥ 

(as was just predicted by the
ollow cone model) were obtained by Lyubarskii & Petrova ( 1998 )
nd Petrova & Lyubarskii ( 2000 ). In particular, it was shown that for
he central passage of the line of sight through the directivity pattern,
 third central hump may appear in the mean profile of the radio
mission. Ho we ver, in these works as well as in almost all subsequent
orks (Andrianov & Beskin 2010 ; Wang et al. 2010 ; Beskin &
hilippov 2012 ; Hakobyan et al. 2017 ; Galishniko va, Philippo v &
eskin 2020 ), profile g ( r ⊥ 

, ϕ m ) was modelled very roughly. 
Thus, one of the main tasks of this work is to determine accurately

he profile g ( r ⊥ 

, ϕ m ) giving us the distribution of the number density
 e o v er the polar cap. Despite the fact that the question of particle
NRAS 526, 1633–1645 (2023) 
roduction has been actively discussed since the early 80s (Daugherty
 Harding 1982 ; Gurevich & Istomin 1985 ; Hibschman & Arons

001 ; Arendt & Eilek 2002 ; Istomin & Sobyanin 2007 ; Medin &
ai 2010 ; T imokhin 2010 ; T imokhin & Arons 2013 ; T imokhin &
arding 2015 ), the dependence on the distance to the axis has not
et been determined. For this reason, model profiles have been used
o far, which have not relied on any detailed calculations (Lyubarskii
 Petrova 1998 ; Petrova & Lyubarskii 2000 ; Beskin & Philippov

012 ; Hakobyan et al. 2017 ). In addition, as one can see from
quation ( 1 ), to determine the value < ω 

2 
pe /γ

3 > we also need to
now the polar cap distribution of the energy of secondary particles.
ection 3 will be devoted to this issue. Here, we show how one
an e v aluate the dependence < ω 

2 
pe /γ

3 > on r ⊥ 

for small r ⊥ 

from a
imple consideration. 

Indeed, it is natural to relate number density of secondary particles
o the number of γ -quanta that are capable of producing a secondary
air abo v e the polar cap. Assuming that the number density of
rimary particles n prim 

accelerated near the neutron star surface does
ot depend on the position on the polar cap, one can write down 

∼ E rad 

E min 
. (5) 

ere E rad is the total energy emitted by a primary particle on the
ength L , and E min is the characteristic energy of a γ -quantum, the
ree path length l 0 of which (see below) 

 0 ∼ B cr 

B 0 

m e c 
2 

E ph 
R c (6) 

oes not exceed the radius of a neutron star R (i.e. the scale at which
he decay of the magnetic field begins to strongly affect the rate of
air production). Here B cr = m 

2 
e c 

3 /e� ≈ 4 . 4 × 10 13 G is the critical
agnetic field, E ph = � ω is a photon energy, and R c is the curvature

adius of the magnetic field line. As a result, we obtain for l 0 ∼ R 

 min ∼ B cr 

B 0 

R c 

R 

m e c 
2 . (7) 

As for the total radiated energy E rad , there are two limiting cases.
s will be sho wn belo w (see Fig. 1 ), for pulsars with sufficiently long
eriods P > 1 s, the energy of primary particles after acceleration
emains practically constant. In this case, one can write down 

 rad ∼ d E prim 

d l 
L, (8) 
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here 

d E prim 

d l 
∼ e 2 

R 

2 
c 

( E prim 

m e c 2 

)4 

. (9) 

t gives for L ∼ R and E prim 

≈ constant 

g( r ⊥ 

) ∝ R 

−3 
c . (10) 

sing now standard evaluation for the curvature radius of the 
agnetic field line near magnetic axis R c ∼ R 

2 / r ⊥ 

, we obtain 

g( r ⊥ 

) ∝ r 3 ⊥ 

. (11) 

n the other hand, in fast pulsars, the primary particles lose almost
ll the energy acquired in the acceleration re gion: E rad ∼ eψ . F or ψ 

constant it gives λ g( r ⊥ 

) ∝ r ⊥ 

. 
Finally, if we assume, as is usually done within the framework 

f the Ruderman–Sutherland model, that the secondary plasma is 
roduced abo v e the vacuum gap in the re gion of zero longitudinal
lectric field, then, as is well known, the secondary particles, after 
mission of all transverse energy due to synchrotron radiation, 
cquire the energy γ ±m e c 2 , where γ ± ∼ R c / l 0 . Substituting again
 0 ∼ R we obtain 

± = k × 100 P 

1 / 2 

(
R 0 

r ⊥ 

)
, (12) 

ere k ≈ 1. Here we include into consideration that polar cap radius
 0 ≈ ( R / c ) 1/2 R . It finally gives for slow pulsars 

< 

ω 

2 
pe 

γ 3 
> ∝ r 6 ⊥ 

. (13) 

s will be shown in Section 3 , all these asymptotic behaviours are
ndeed realized with a good accuracy. 

The paper is organized as follows: In Section 2 , we discuss
he accelerating potential which is necessary to fix the energy of
rimary particles. In particular, we include into consideration the 
eneral relativistic correction. Further, in Section 3 , we determine 
oth the spatial and energy distributions for the first (curvature) and 
econd (synchrotron) generations. In general, we follow the approach 
eveloped by Hibschman & Arons ( 2001 ). We show that the simple
elations ( 11 ) and ( 12 ) defined abo v e for the dependence of the
umber density and the characteristic energy of secondary particles 
n the distance from the magnetic axis r ⊥ 

are satisfied with good
ccuracy . Finally , in Section 4 , the results of calculating the profiles
or five O-mode pulsars with triple profiles listed in Table 1 are
resented. Good agreement of the obtained results with observational 
ata is shown. 

 T H E  E N E R G Y  O F  PRIMARY  PA RTICLES  

.1 Accelerating potential 

o begin with, let us discuss the electric potential ψ accelerating 
rimary particles in the polar region. Here, as a starting point, 
e use the results of recent numerical simulations (Philippov, 
pitko vsk y & Cerutti 2015 ; Timokhin & Harding 2015 ; Philippov,
imokhin & Spitko vsk y 2020 ; Cruz et al. 2022 ). Recall that their
ain difference from the original models (Ruderman & Sutherland 

975 ; Arons 1982 ) is that the process of particle production is
ssentially non-stationary. Ho we ver, at the same time, the plasma 
ometimes completely leaves the polar region. This implies that at 
hese moments a vacuum gap appears abo v e the polar cap, as was
redicted by Ruderman & Sutherland ( 1975 ). It is not surprising,
herefore, that the ef fecti ve accelerating potential determined by 
imokhin & Harding ( 2015 ) coincides with good accuracy with
he Ruderman–Sutherland potential. Therefore, in what follows we 
ssume that the vacuum gap model is an adequate approximation 
or describing the production of particles in the polar regions of a
eutron star. 
Thus, below we define the potential drop as 

 RS ≈ 2 πρGJ H 

2 , (14) 

here H is the inner gap height, and 

GJ = − �B 

2 πc 
(15) 

s Goldreich & Julian ( 1969 ) charge density. Note straight away that
GJ ∝ B cos θb , where θb is the angle between angular velocity � and
agnetic field B . Finally, according to Timokhin & Harding ( 2015 ),
S height H RS can be written down as 

 RS = 1 . 1 × 10 4 | cos θb | −3 / 7 R 

2 / 7 
c , 7 P 

3 / 7 B 

−4 / 7 
12 cm . (16) 

ere and in what follows the magnetic field B 12 at the magnetic pole
s expressed in 10 12 G, pulsar period P in seconds, and curvature
adius R c,7 in 10 7 cm. In equation ( 16 ), as in No voselo v et al. ( 2020 ),
e add the dependence of charge density on the angle θb between
agnetic field and rotational axis into consideration. It is easy to do

f one change  to | cos θb | . In what follows, it is the dependence
f the curvature radius R c on the distance from the magnetic axis
hat will allow us to obtain the spatial distribution of the secondary
lasma. 
Recall, ho we ver, that the RS potential was obtained under the

ssumption that the gap height H is much less than the radius of the
olar cap R 0 . At least, it is clear that this potential cannot be greater
han the potential drop ψ v corresponding to full vacuum within open

agnetic field line region. In any case, expression ( 14 ) cannot be
alid for r ⊥ 

= 0, when R c → ∞ , and for r ⊥ 

→ R 0 when ψ RS 	= 0. 
To determine the vacuum potential drop ψ v it is necessary to

olve Poisson equation ∇ 

2 ψ = 4 πρGJ with boundary conditions 
see Beskin & Litvinov 2022 for more detail) 

( r = R, θ, ϕ) = 0 , (17) 

( r , θ = θ0 ( r ) , ϕ) = 0 , (18) 

 r , θ , and ϕ are polar coordinates), where for small angles θ

0 ( r) = 

(
rR 

2 
0 

R 

3 

)1 / 2 

. (19) 

ere we use dipole geometry B = (3( nm ) n − m ) /r 3 . As a result,
oisson equation looks like 

1 

r 2 

∂ 

∂ r 

(
r 2 

∂ ψ 

∂ r 

)
+ 

1 

r 2 sin θ

∂ 

∂ θ

(
sin θ

∂ ψ 

∂ θ

)
+ 

1 

r 2 sin 2 θ

∂ 2 ψ 

∂ ϕ 2 m 

= −2 
B 0 

c 

R 

3 

r 3 

(
cos θ cos χ + 

3 

2 
sin θ sin ϕ m sin χ

)
, 

(20) 
MNRAS 526, 1633–1645 (2023) 
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Figure 2. 2D secondary particle distribution n ±( r ⊥ ) (equation 57 ) generated 
by homogeneous primary particle distribution n prim 

= 1 for ordinary pulsar 
( P = 1 s, B 12 = 1, χ = 0 ◦) with (top curve) and without (bottom curve) 
general relativistic corrections. 

Figur e 3. Ener gy distribution n (1) 
± ( γ±) of generation I secondary particles 

( 64 ) for different distances x 0 of the primary particle from magnetic axis for 
P = 0.8 s, magnetic field B 12 = 1, and χ = 30 ◦. Dashed line corresponds to 
the slope γ −4 / 3 

± . 

Figure 4. Dependence of the efficient Lorentz-factor γ s = < 1/ γ 3 > 

−1/3 on 
the distance x 0 of the primary particle from the magnetic axis (generation I). 
Fitting line corresponds to the slope γs = 120 x −1 
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hich gives for electric potential ψ (Beskin & Litvinov 2022 ) 

ψ( r ⊥ 

, ϕ m 

, l) = 

1 

2 

B 0 R 

2 
0 

c 
cos χ ×[ 

1 −
(

r ⊥ 

R 0 

)2 

−
∑ 

i 

c 
(0) 
i 

(
l 

R 

)−λ
(0) 
i 

R/R 0 

J 0 ( λ
(0) 
i r ⊥ 

/R 0 ) 

] 

+ 

3 

8 

B 0 R 

3 
0 

cR 

sin ϕ m 

sin χ

[ (
r ⊥ 

R 0 
− r 3 ⊥ 

R 

3 
0 

)(
l 

R 

)1 / 2 

−
∑ 

i 

c 
(1) 
i 

(
l 

R 

)−λ
(1) 
i 

R/R 0 

J 1 ( λ
(1) 
i r ⊥ 

/R 0 ) 

] 

. (21) 

ere χ is the inclination angle between magnetic moment m and
otation axis, l is the distance from the star centre, λi are the zeros of
essel functions J 0,1 ( x ), and the values c (0) 

i and c (1) 
i are the expansion

oef ficients gi ving 
∑ 

i c 
(0) 
i J 0 ( λ0 

i x) = 1 − x 2 and 
∑ 

i c 
(1) 
i J 1 ( λ1 

i x) =
 − x 3 . As a result, we have for vacuum potential drop ψ v 

 v ( r ⊥ 

, ϕ m 

) = 

1 

2 

B 0 R 

2 
0 

c 

(
1 − r 2 ⊥ 

R 

2 
0 

)
cos χ

+ 

3 

8 

B 0 R 

3 
0 

cR 

(
r ⊥ 

R 0 
− r 3 ⊥ 

R 

3 
0 

)
sin ϕ m 

sin χ. (22) 

hus, in what follows we put potential drop ψ in the form 

 = min ( ψ RS , ψ v ) . (23) 

.2 General relativistic correction 

s is well-known, the effects of general relativity and, in particular,
he frame-dragging (Lense–Thirring) effect, under certain condi-
ions, can play a significant role in the generation of secondary
lasma near the polar caps of a neutron star (Beskin 1990 ; Muslimov
 Tsygan 1992 ; Harding & Muslimov 1998 ; Philippov et al. 2015 ,

020 ). For this reason, below we estimate all possible corrections
hat can affect the production of secondary particles. For simplicity,
e restrict ourselves to only the first order in the small parameter
 g / R , where r g = 2 GM / c 2 is the black hole radius of corresponding
ass. 
Starting from time-independent Maxwell equation in the rotation

eference frame (see Thorne, Price & Macdonald 1986 for more
etail) 

 × ( αE + β × B + βR × B ) = 0 , (24) 

here α is the lapse function ( α2 ≈ 1 − r g / R ), β is Lense-Thirring
ector ( βϕ = −ω) and βR = � × r /c, we obtain 

E + β × B + βR × B = −∇ψ. (25) 

or ρe = 0 it gives 

 

(∇ψ 

α

)
= 4 πρGJ , (26) 

here now the Goldreich-Julian charge density looks like 

GJ = − 1 

8 π2 
∇ k 

(
 − ω 

αc 
∇ 

k � 

)
. (27) 

As we see, the first relativistic correction (1 − ω/ ) appears in
he expression for ρGJ where the ratio ω/  depends on neutron star
oment of inertia I r ∼ MR 

2 : 

ω 


= 

I r r g 

MR 

3 
. (28) 
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Figur e 5. Ener gy distribution n 
(2) 
± ( γ±) of the generation II secondary 

particles ( 64 ) for different distances x 0 from magnetic axis for P = 0.8 s, 
magnetic field B 12 = 1, and χ = 30 ◦. 
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hus, this correction just corresponds to small value r g / R under
onsideration. It is nice that the characteristic scale of the changes 
n all the relativistic corrections is R , while the scale of change
n ψ is R 0 � R . Therefore, one can consider all relativistic
orrections as constants, which allowed us to put r = R in
quation ( 28 ). 

The second relativistic correction appears in the expression for 
agnetic field flux 

 = 2 π | m | sin 2 θ

r 

(
1 + 

3 

4 

r g 

r 

)
. (29) 

s for small angles θ one can put sin θ = r ⊥ 

/ r , i.e. to write down 

 

2 = 

� 

2 π | m | y 
3 

(
1 + 

3 

4 

r g 

y 

)−1 

, (30) 

here x = r ⊥ 

and y = r , we obtain for curvature radius R c ≈ 1 /y ′′ xx 

he following correction R c, GR = K cur R c , where 

 cur = 

(
1 − 1 

2 

r g 

R 

)
. (31) 

ext, for polar cap radius R 0, GR = K cap R 0 we have 

 cap = 

(
1 − 3 

8 

r g 

R 

)
. (32) 

inally, equation ( 26 ) in cylindrical coordinates looks now like 

α2 

r ⊥ 
∂ 

∂ r ⊥ 

(
r ⊥ 

∂ ψ 

∂ r ⊥ 

)
+ 

∂ 2 ψ 

∂ z 2 
= − 2 B 0 

c 

(
1 + 

3 

4 

r g 

R 

)(
1 − ω 



)
. (33) 

s a result, we obtain for the general relativistic correction for
ymmetric potential ψ GR ( r ⊥ 

) = K ψ ψ( r ⊥ 

) at distances h > R 0 o v er
he star surface 

 ψ = 

(
1 − ω 



)(
1 − r g 

R 

)−1 
. (34) 

Thus, the effects of general relativity do turn out to be significant
n the analysis of the formation of secondary particles. Ho we ver,
or simplicity, below we do not write out the corresponding modi- 
cations; they will only be included into consideration in the final 
esults. 

.3 The energy of a primary particle 

inally, in order to begin discussing the question of the secondary 
lectron–positron plasma production, we need to determine the 
nergy of the primary particle E e . In general case, the equation of
otion looks like 

d E e 
d l 

= e E ‖ − 2 

3 

e 2 

R 

2 
c 

( E e 
m e c 2 

)4 

. (35) 

ere E ‖ = −∂ ψ/ ∂ l, and R c again is the curvature radius of the
agnetic field line. Accordingly, the second term is responsible for 

urvature losses. 
Fig. 1 shows the dependence of the energy E e on the distance

rom the star surface h for the vacuum potential ψ v (equation 21 ) for
wo different pulsar periods P corresponding to small ( Q < 1, top)
nd large ( Q > 1, bottom) parameter Q . As we see, for Q > 1 the
nergy losses described by the second term in equation ( 35 ) become
egligible, so the condition E e ( l) = eψ( l) − eψ( l 0 ) ( l 0 is the particle
tarting point) is met with good accuracy. In this case, the energy of
he primary particle reaches a constant value at a height h ≈ R 0 . For
he RS model with H RS < R 0 this happens at even lower altitudes. 

On the other hand, for shorter periods P , the particle energy does
ot reach the maximum possible values e �ψ , and subsequently 
ecreases with increasing the distance from the neutron star surface. 
o we ver, as sho wn in Table 1 , all the pulsars of interest have the
arameter Q > 1. On the other hand, generation of curvature γ -
uanta converting later to secondary pair takes place at the distances
 up to star radius R . For this reason, in our calculations, we will
eglect both the acceleration region and the dependence of the energy
f primary particles on the curvature losses. 

 G E N E R AT I O N  O F  S E C O N D  A R  Y  PA IR S  

.1 Photon free pass 

s was already noted, in general we follow the approach developed 
y Hibschman & Arons ( 2001 ). Wherein, the main difference is that
e obtain the dependence of the energy spectrum and multiplicity λ
f the particle production on the distance r ⊥ 

from the magnetic axis.
To determine the free path length of a photon exactly, it is necessary 

o use general expression for the probability w l of photon production
t a length d l (Berestetsky, Lifshits & Pitaevsky 1971 ) 

 w l = 

3 
√ 

3 

16 
√ 

2 

e 3 B sin θb ( l) 

� m e c 3 
exp 

(
−8 

3 

B cr 

B( l ) sin θb ( l ) 

m e c 
2 

E ph 

)
d l. (36) 

ere again B cr = m 

2 
e c 

3 /e� ≈ 4 . 4 × 10 13 G is the critical magnetic
eld, E ph = � ω is a photon energy, and θb is the angle between the
av e v ector k and the magnetic field B . As a result, the free pass

ength l γ is to be determined from the condition ∫ l γ

0 
d w l = 1 . (37) 

As to photon energy E ph , in most cases (see e.g. Philippov et al.
015 , 2020 ; Timokhin & Harding 2015 ), it was assumed that all the
hotons emitted by primary particles with the energy E e = γe m e c 

2 

re radiated at the characteristic frequency (Landau & Lifshits 1971 ) 

 c = 

3 

2 

c 

R c 
γ 3 

e . (38) 

elow we exactly include into consideration the spectrum of the 
urvature radiation (i.e. the energy radiated in the frequency domain 
 ω at the distance d l ) 

 I = 

√ 

3 

2 π

e 2 

cR 

γe F ( ω/ω c )d ω d l, (39) 
MNRAS 526, 1633–1645 (2023) 
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M

Figure 6. Dependence of the efficient Lorentz-factor γ s = < 1/ γ 3 > 

−1/3 

on the distance x 0 (generation II). Fitting line corresponds to the slope 
γs = 105 x −1 

0 . 

Table 2. Tabulation of the function L ( x 0 , x ⊥ , h ) (equation 47 ) for x 0 = 0.6 
and for different values x ⊥ . 

h / R 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.599 1.0 1.4 1.9 2.6 3.4 4.3 5.4 6.7 
0.59 1.5 2.0 2.7 3.4 4.3 5.4 6.6 8.1 
0.58 1.9 2.5 3.3 4.1 5.1 6.3 7.7 9.3 

Table 3. Multiplication parameters λI and λII for two generations I and II 
for different values x 0 of a primary particle ( B 12 = 1). 

Generation 
P = 0.8 s P = 1.0 s P = 1.2 s 

λI λII λI λII λI λII 

0.1 81 59 2 0 0 0 
0.2 491 1279 69 50 0 0 
0.3 869 3598 225 326 4 1 
0.4 1169 6047 385 801 14 6 
0.5 1350 7801 469 1126 20 10 
0.6 1443 8568 457 1057 16 8 
0.7 1356 7285 320 565 6 2 
0.8 825 2882 90 82 0 0 
0.9 78 67 0 0 0 0 
total 803 4055 209 419 6 3 
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here 

 ( ξ ) = ξ

∫ ∞ 

ξ

K 5 / 3 ( x )d x , (40) 

 5/3 is the Macdonald function, and ξ = ω / ω c , has a rather long
ail. As a result, curvature photons will have different energies, and
herefore different free path lengths l γ . Moreo v er, as is well known
Sturrock 1971 ; Ruderman & Sutherland 1975 ), relations ( 36 )–( 37 )
ive with a high accuracy for small enough free pass lengths l γ � R 

 0 = 

8 

3 � 

R c 
B cr 

B 

m e c 
2 

� ω 

. (41) 

ere � = 15–20 is the logarithmic factor: � ≈ � 0 − 3ln � 0 , where 

 0 = ln 

[ 

e 2 

� c 

ω B R c 

c 

(
B cr 

B 

)2 (
m e c 

2 

E 

)2 
] 

∼ 20 . (42) 
NRAS 526, 1633–1645 (2023) 

ph 
.2 First (cur v ature) generation 

o determine the rate of the secondary particle generation, we start
rom one particle moving along magnetic field line intersecting the
tar surface at the distance r 0 from the axis. Due to equation ( 39 ),
his primary particle produces d N photons in the frequency domain
 ω at the path d h 

 N 

(1) 
ph = 

√ 

3 

2 π

e 2 

cR c ( h ) 

γe F ( ω/ω c ) 

� ω 

d ω d h. (43) 

n the other hand, frequency ω determines the free path l γ = l γ ( ω)
hich, in turn, determines the foot point of the magnetic field line
 ⊥ 

at which the secondary pair is created 

 ⊥ 

= 

( 

1 − 3 

8 

l 2 γ

R 

2 

) 

r 0 . (44) 

ote that in a dipole magnetic field, this expansion does not contain
he corrections ∝ hl γ / R 

2 (and, certainly, it does not contain the term
 h 2 / R 

2 as r ⊥ 

= r 0 for l γ = 0). 
As we show below, the leading term in equation ( 1 ) is enough

or our consideration. On the other hand, in what follows to
etermine with the required accuracy the exponent in the pair creation
robability w l ( θb ) (equation 36 ) we use exact expression for the
ngle θb between magnetic field B and the wav e v ector k . In a dipole
agnetic field for γ -quanta radiated tangentially at the height h it

ooks like 

b = 

3 

4 

r 0 l γ

R 

2 
f ( h ) , (45) 

here the correction function can be written down as 

 ( h ) = 

(
1 + 

h 

R 

)1 / 2 (
1 + 

L ( h ) l 0 
R 

+ 

h 

R 

)−1 

. (46) 

ere we introduce by definition another correction function L ( h ) as 

 γ ( l 0 , h ) = L ( h ) l 0 , (47) 

here by definition 

 0 ( ω ) = 

32 

9 � 

R 

2 

r 0 

B cr 

B 0 

m e c 
2 

� ω 

(48) 

s the γ -quantum free pass in the case l γ � R with the starting point
 = 0. Coefficient L ( h ) due to the strong nonlinearity of the problem
or h ∼ l 0 ∼ R should be determined numerically by direct integration
quation (37 ) for probability w l ( h ) corresponding to starting point h
t which photon free pass is equal to l γ (see Table 2 ). Certainly, as
ne can see, L → 1 for h → 0 and l γ → 0 ( r ⊥ 

→ r 0 ). Finally, for
rimary particle moving along magnetic field line we have 

 c = 

4 

3 

R 

2 

r 0 

(
1 + 

h 

R 

)1 / 2 

. (49) 

Thus, one can write down for the r ⊥ 

distribution of the secondary
articles 

 N 

(1) 
± = 

√ 

3 

2 π

e 2 

� c 

γe F ( ω/ω c ) 

R c ω 

d ω 

d r ⊥ 

d r ⊥ 

d h. (50) 

o determine the deri v ati ve d ω/d r ⊥ 

, one can rewrite the relation ( 44 )
s 

l γ ( ω) 

R 

= 

2 
√ 

2 √ 

3 

( r 0 − r ⊥ 

) 1 / 2 

r 
1 / 2 
0 

. (51) 

t finally gives 

1 

ω 

d ω 

d r ⊥ 

= 

1 

2( r 0 − r ⊥ 

) 

(
1 − ω 

L 

d L 

d ω 

)−1 

. (52) 
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Figure 7. Total multiplication parameter λ( x 0 ) = λI + λII of secondary 
particles of the first and second generation for pulsars with periods P = 0.8 s 
and P = 1 s as a function of coordinate x 0 of a single primary particle. The 
dashed lines show how well the relation λ ∝ x 3 0 holds for small x 0 . Solid lines 
sho w ho w the parameter < ω 

2 
pe /γ

3 > depends on x 0 . 
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ithin our approximation ( 44 ), the value of L does not depend on
 (both free path lengths l 0 and l γ are mainly determined by the
xponent, i.e. both depend on ω as ω 

−1 ), and therefore below we do
ot take into account the logarithmic deri v ati ve ω/ L (d L / d ω). 
As a result, we obtain for linear distribution of secondary particles 

 N 

(1) 
± = n 

(1) 
± ( x ⊥ 

) d x ⊥ 

created by one primary particle moving along
agnetic field line with foot point distance from the axis r 0 

 

(1) 
± ( x ⊥ 

) = 

3 
√ 

3 

16 π

e 2 

� c 

R 0 

R 

x 0 

( x 0 − x ⊥ 

) 

∫ H 

0 

d h 

R 

γe ( x 0 , h ) F ( ξ ) , (53) 

here now 

= 

64 
√ 

2 

27 
√ 

3 � 

B cr 

B 0 

R 

3 

R 

2 
0 

( 1 + h/R ) 

γ 3 
e ( x 0 , h ) 

L ( x 0 , x ⊥ 

, h ) 

x 0 
√ 

x 0 
√ 

x 0 − x ⊥ 

. (54) 

ere we introduce by definition two dimensionless parameters 

 0 = 

r 0 

R 0 
; x ⊥ 

= 

r ⊥ 

R 0 
. (55) 

ote that expression ( 53 ) has no singularity at x ⊥ 

= x 0 , since the
rgument ξ ( 54 ) tends to infinity for x ⊥ 

→ x 0 resulting in F ( ξ ) → 0.
As for the upper integration limit H , it can be set equal to infinity,

ince, as shown in Table 2 , parameter L introduced abo v e increases
apidly with increasing h . Therefore, already at h ∼ R , due to the large
alue of the argument ξ in ( 53 ), the integrand becomes exponentially
mall. For this reason in what follows, we do not denote the limits of
nte gration o v er h . 

Finally, if the primary particles have 2D spatial distribution d N prim 

 n prim 

( r 0 , ϕ m ) r 0 d r 0 d ϕ m within the polar cap, we obtain for 2D
umber density of secondary pairs d N 

(1) 
± = n 

(1) 
± ( r ⊥ 

, ϕ m 

) r ⊥ 

d r ⊥ 

d ϕ m 

 

(1) 
± = 

√ 

3 

2 π

e 2 

� c 

∫ R 0 

r ⊥ 
r 0 d r 0 

∫ 
d h 

γe F ( ω/ω c ) 

R c ωr ⊥ 

d ω 

d r ⊥ 

n prim 

. (56) 

t gives 

 

(1) 
± ( r ⊥ 

, ϕ m 

) = 

3 
√ 

3 

16 π

e 2 

� c 

R 0 

R ∫ 1 

x ⊥ 

x 2 0 d x 0 
x ⊥ 

( x 0 − x ⊥ 

) 

∫ 
d h 

R 

γe ( x 0 , h ) F ( ξ ) n prim 

. (57) 

On Fig. 2 we show 2D secondary particle distribution n ±( r ⊥ 

)
equation 57 ) generated by homogeneous primary particle distribu- 
ion n prim 

= 1 for ordinary pulsar ( P = 1 s, B 12 = 1, χ = 0 ◦) with (top
urve) and without (bottom curve) general relativistic corrections 
escribed in Section 2.2 . Corresponding multiplicities are λGR = 845 
nd λ = 651. To determine the relativistic corrections, we chose the
alues M = 1 . 4 M � for neutron star mass, R = 12 km for that radius,
nd I r = 150 M � km 

2 for moment of inertia (see Greif et al. 2020
or more detail). Fitting curves for x ⊥ 

� 1 correspond to asymptotic
ehaviour n ± ∝ x 3 ⊥ 

(equation 11 ) which, as we can see, perfectly
atches the results obtained. 
The approach we have considered above also makes it possible 

o estimate the energetic spectrum of secondary particles. Let us 
rst consider again the spectrum of secondary particles, which 

s generated by one primary particle. Then equation ( 50 ) can be
ewritten as 

 N 

(1) 
± = 

√ 

3 

2 π

e 2 

� c 

γe F ( ω/ω c ) 

R c ω 

d ω 

d γ±
d γ± d h. (58) 

n the other hand, as one can easily show by passing to a reference
rame in which γ -quantum propagates perpendicular to the external 
agnetic field, after an almost instantaneous transition to the lower 
andau level, the energy of secondary particles can be written as
±m e c 2 where 

± = 

1 

θb 
. (59) 

ence, expressions ( 45 ) and ( 59 ) can be written down as 

± = 

4 

3 

R 

2 

r 0 l 0 

1 

L ( h ) f ( h ) 
, (60) 

o that 

1 

ω 

d ω 

d γ±
= 

1 

γ±
. (61) 

As a result, we obtain for the first (curvature) generation energy
istribution d N 

(1) 
± ( γ±) = n 

(1) 
± ( γ±) d γ± produced by one primary par-

icle with foot point x 0 

 

(1) 
± ( γ±) = 

3 
√ 

3 

8 π

e 2 

� c 

R 0 

R 

∫ 
d h 

R 

γe ( x 0 , h ) 

γ±
x 0 F ( ξ ) , (62) 

here 

= 

64 

27 � 

B cr 

B 0 

R 

2 

R 0 

L ( h ) f ( h )(1 + h/R) 

x 0 γ 3 
e ( h ) 

γ±. (63) 

ccordingly, for the continuous distribution of primary particles 
 prim 

( x 0 , ϕ) we obtain for generation I energy distribution of sec-
ndary particles 

 

(1) 
± ( γ±) = 

3 
√ 

3 

8 π

e 2 

� c 

R 

2 
0 

R 

2 
x ⊥ 

γ −1 
±

∫ 
d h 

R 

γe ( x 0 , h ) F ( ξ ) n prim 

. (64) 

Fig. 3 shows the energy distribution of secondary particles n (1) 
± ( γ±)

 62 ) for different distances x 0 of the primary particle from magnetic
xis and for standard values P = 0.8 s, magnetic field B 12 = 1, and
= 30 ◦. It is clearly seen that at low particle energies, the relation

 

(1) 
± ( γ±) ∝ γ

−4 / 3 
± is fulfilled (cf. Gurevich & Istomin 1985 ). This

symptotic behaviour can be easily obtained from relation ( 64 ), since
( ξ ) ∝ ξ 1/3 for ξ � 1. We also note a sharp drop in the distribution

unction at low particle energies, when the magnetosphere becomes 
ransparent for γ -quanta. As expected, the obtained spectra are quite 
imilar to the spectra obtained by Hibschman & Arons ( 2001 ). 

Further, Fig. 4 demonstrates the dependence of the efficient 
orentz-factor γ s = < 1/ γ 3 > 

−1/3 on the distance x 0 of the primary
article from the magnetic axis. Fitting line corresponds to the slope
s = 120 x −1 

0 in excellent agreement with power dependence ( 12 ).
ence, the estimate < ω 

2 
pe /γ

3 > ∝ r 6 0 ( 13 ) remains valid as well. 
MNRAS 526, 1633–1645 (2023) 
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Figure 8. Distributions of the secondary particles as a function of their 
longitudinal 4-velocity u 

′ 
in the plasma rest frame for two values x 0 = 0.5 and 

x 0 = 0.8. Curve lines correspond to J ̈uttner distributions ( 80 ) with parameters 
p = 2.3 and p = 3.1. 
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.3 Second (synchr otr on) generation 

s is well known, synchrotron photons emitted by secondary
articles play a significant role in the generation of secondary plasma
Daugherty & Harding 1982 ; Gurevich & Istomin 1985 ; Istomin &
obyanin 2007 ). The point is that the secondary particles are born
ith nonzero angles θp to the magnetic field. As was shown by
eskin ( 1982 ) and Daugherty & Harding ( 1983 ), for not so large
agnetic field B 0 ∼ 10 12 G one can use the classical approximation 

p = θb , (65) 

here θb is given by equation ( 45 ). Accordingly, the energies of
econdary particles at the moment of their birth γ max m e c 2 are equal
o each other, so that 

max = 

1 

2 

� ω 

m e c 2 
. (66) 

To determine the frequency ω 

′ 
spectrum of synchrotron photons,

t is convenient to start with the standard form of the single particle
mission (see e.g. Istomin & Sobyanin 2007 ) 

 N 

(2) 
ph = 

√ 

3 

2 π

e 2 

� c 
ω B 

d ω 

′ 

ω 

′ 

∫ 
θ ( t ) F ( ω 

′ /ω s )d t , (67) 

here now 

 s = 

3 

2 
ω B θ1 ( t ) γ

2 
1 ( t ) , (68) 

nd subscript 1 corresponds to particles of the first generation.
ccordingly, the expression for synchrotron energy losses looks like

Landau & Lifshits 1971 ) 

d γ1 

d t 
= −2 

3 

e 2 

m e c 2 

ω 

2 
B 

c 
θ2 

1 γ
2 
1 . (69) 

e remind that the synchrotron radiation time is so short that one
an assume that all synchrotron photons are emitted at the point of
roduction of the secondary pair. Using now the ratio between the
urrent values γ 1 ( t ) and θ1 ( t ) 

1 

γ 2 
1 

= 1 − v 2 ‖ 
c 2 

(1 + θ2 
1 ) , (70) 

here v � = constant (1 − v 2 ‖ /c 
2 = 1 /γ 2 

1 ±), which gives for v � ≈ c 

1 γ
2 
1 = 

γ1 

γ1 ±
( γ 2 

1 − γ 2 
1 ±) 1 / 2 , (71) 
NRAS 526, 1633–1645 (2023) 
e have for the number of photons generated by electron–positron
air created by single curvature γ -quantum having energy � ω 

 N 

(2) 
ph = 2 

3 
√ 

3 

4 π

c 

ω B 

d ω 

′ 

ω 

′ 

∫ γmax 

γ1 ±

γ1 ±F ( ω 

′ /ω s ) 

γ1 ( γ 2 
1 − γ 2 

1 ±) 1 / 2 
d γ1 . (72) 

ere the absence of photons with a high frequenc y ω 

′ 
for giv en energy

f the curvature γ -quantum � ω (which determines the maximum
requency ω s ) is associated with a sharp diminishing in the function
 ( ω 

′ 
/ ω s ) for ω 

′ � ω s . Accordingly, an additional factor 2 takes into
ccount the fact that a secondary electron–positron pair is involved
n the emission of synchrotron photons. 

Let us now note the following circumstance, which can signif-
cantly simplify our further calculations. Using relation ( 66 ), one
an easily find that the ratio of the characteristic frequency of a
ynchrotron photon ω s ( 68 ) produced by secondary particle to the
requency of a curvature photon ω producing this particle 

ω s 

ω 

= 

3 

8 

B 0 

B cr 

� ω 

m e c 2 

l γ

R c 
(73) 

urns out to be e xactly � 

−1 . F or this reason, the mean free path of
ynchrotron photons must be � times greater than the mean free path
f curvature photons. Since � � 1, we can neglect the difference in
he free path length from the direction of the synchrotron radiation
f photons within the radiation cone as they vary from ( � + 1) l 0 to
 � − 1) l 0 . In other words, we assume that all synchrotron photons
mitted by secondary pair are radiated at the same height h as
he curvature γ -quantum producing this pair. For the same reason,
efining ω B through expression ( 68 ), we can put B = B 0 (i.e. ignore
he correction associated with h 	= 0), since synchrotron photons,
eading to the production of secondary pairs at h ∼ R , will be emitted
ear the surface of a neutron star, and synchrotron photons emitted
t h ∼ R will not lead to the production of particles. 

As a result, we finally obtain for 1D distribution of the second
eneration particles d N 

(2) 
± ( x ⊥ 

) produced by single primary particle
oving along magnetic field line x 0 

 N 

(2) 
± ( x ⊥ 

) = 

27 

32 π2 

e 2 

� c 

B cr 

B 0 

R 0 

R 

x 0 d x ⊥ 

( x 0 − x ⊥ 

) ∫ 
d h 

R 

γe ( h, x 0 ) 
∫ ∞ 

0 

d ξ

ξ
F ( ξ ) 

∫ g max 

1 

F ( ξ ′ ) 

g 
√ 

g 2 − 1 
d g, 

(74) 

here we introduce two dimensionless variables g = γ 1 / γ 1 ± and
= ω / ω c . Accordingly, ξ

′ = ξ
′ 
( g , ξ , x ⊥ 

, h ) can be written down as 

′ = 

1024 
√ 

2 

729 
√ 

3 � 

2 

B 

3 
cr 

B 

3 
0 

R 

2 

R 0 

1 

γ 3 
e 

L 

2 ( x 0 , x ⊥ , h ) f ( h ) 
x 0 

√ 

x 0 
√ 

x 0 − x ⊥ 
1 

ξ

(1 + h/R) 3 / 2 

g 
√ 

g 2 − 1 
. (75) 

here is no singularity at x ⊥ 

= x 0 in ( 74 ) as ξ
′ → ∞ for x ⊥ 

→ x 0 . 
Further, 

 max = 

4 

3 � 

B cr 

B 0 
L ( x 0 , x ⊥ 

, h ) f ( h ) . (76) 

ote that the violation of condition g max > 1, which occurs at
ufficiently high magnetic fields, corresponds to the well-known
egime of pair production at the lower Landau levels (Beskin 1982 ;
augherty & Harding 1983 ; Istomin & Sobyanin 2007 ), when the

ynchrotron radiation of secondary particles actually no longer takes
lace. Therefore, when the condition g max < 1 is satisfied, the
eneration of secondary particles of the second generation does not
ccur. Finally, as was already noted, the upper limit of integration
 v er h is largely determined by the growth of the function L ( h ). 
Besides, distribution by Lorentz-factor γ ± looks like 
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Figure 9. Density profiles λg ( r ⊥ ) = ( λI + λII ) g( r ⊥ ) of five O-mode 
pulsars listed in Table 4 . 
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 N 

(2) 
± ( γ±) = 

27 

16 π2 

e 2 

� c 

B cr 

B 0 

R 0 

R 

x 0 d γ±
γ±∫ 

d h 

R 

γe ( h, x 0 ) 
∫ ∞ 

0 

d ξ

ξ
F ( ξ ) 

∫ g max 

1 

F ( ξ ′ ) 

g 
√ 

g 2 − 1 
d g, 

(77) 

here again ξ = ω / ω c , so that 

′ ( ξ, γ±) = 

1024 

729 � 

2 

B 

3 
cr 

B 

3 
0 

R 

2 

R 0 

1 

γ 3 
e 

L 

2 ( h ) f 2 ( h ) 

x 0 

γ±
ξ

(1 + h/R) 3 / 2 

g 
√ 

g 2 − 1 
. (78) 

Finally, if the secondary particles have 2D spatial distribution d N 

(1) 

 n (1) ( r 0 , ϕ m ) r 0 d r 0 d ϕ m within the polar cap, we obtain for 2D number
ensity of secondary pairs d N 

(2) 
± = n 

(2) 
± ( r ⊥ 

, ϕ m 

) r ⊥ 

d r ⊥ 

d ϕ m 

 

(2) 
± ( x ⊥ 

, ϕ m 

) = 

27 

32 π2 

e 2 

� c 

B cr 

B 0 

R 0 

R 

∫ 1 

x ⊥ 

n (1) x 2 0 d x 0 
x ⊥ 

( x 0 − x ⊥ 

) ∫ 
d h 

R 

γe ( h, x 0 ) 
∫ ∞ 

0 

d ξ

ξ
F ( ξ ) 

∫ g max 

1 

F ( ξ ′ ) 

g 
√ 

g 2 − 1 
d g, 

(79) 

here here ξ
′ 
is again given by ( 75 ). 

Fig. 5 shows the energy spectrum of the second (synchrotron) 
eneration for the same parameters as in Fig. 3 . Accordingly,
ig. 6 demonstrates the dependence of the efficient Lorentz-factor 
s = < 1/ γ 3 > 

−1/3 on the distance x 0 from the magnetic axis. As one
an see, the power-law dependence n (2) 

± ∝ γ −1 
± is also fulfilled here

ith good accurac y. Moreo v er, this dependence turns out to be quite
niversal and independent of the generation. 
Further, Table 3 shows the multiplication parameters λI and λII for 

wo generations I and II for dif ferent v alues x 0 of a single primary
article. We see that if for sufficiently fast pulsars ( P = 0.8 s) the
ultiplication parameter λII of the second generation significantly 

xceeds the multiplication parameter λI of the first generation, for 
ulsars located near so-called ‘death line’ ( P = 1.2 s), they become
omparable to each other. In the latter case, the magnetosphere 
ecomes transparent for most synchrotron photons, and therefore, 
espite their numerous, only a small part leads to the production of
econdary pairs. 

Next, Fig. 7 shows the total multiplication parameter 
= λI + λII for pulsars with periods P = 0.8 s and P = 1 s as a

unction of coordinate x 0 of a primary particle. As one can see, this
um models well enough the total number density n ± = λg ( x 0 ) n GJ of
he secondary plasma. The dashed lines corresponding to fitting func- 
ions of the form f ( x 0 ) ∝ x 3 0 exp ( −x 2 0 /x 

2 
a ) sho w ho w well the relation

( x 0 ) ∝ x 3 0 holds for small x 0 . Accordingly, the solid lines show how
he parameter < ω 

2 
pe /γ

3 > depends on x 0 . 
Finally, Fig. 8 shows the total (generations I and II) distributions of

he secondary particles as a function of their longitudinal 4-velocity 
 

′ 
in the plasma rest frame ( < v ′ > = 0) for two values x 0 = 0.5 and

.8. Curve lines correspond to J ̈uttner distributions (Rafat, Melrose 
 Mastrano 2019 ) 

 ( u 

′ ) = 

e −pγ ′ 

2 K 1 ( p) 
, (80) 

ith appropriate parameters p . Here γ
′ = [1 + ( u 

′ 
) 2 ] 1/2 and 

∫ 
F ( u 

′ 
)d u 

′ 

 1. As we see, although the obtained distributions are close
o the J ̈uttner distributions, they differ in noticeable asymmetry 
Mikhaylenko et al. 2021 ). Wherein, for all values of x 0 (and for
ulsar periods P ≈ 1 s under consideration), the parameters p are
ithin 1 < p < 5, in full agreement with the results obtained by
rendt & Eilek ( 2002 ). This implies that the temperature of the

econdary plasma T is less than the rest particle energy: T < m e c 2 . 
MNRAS 526, 1633–1645 (2023) 
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M

Table 4. Parameters of triple O-mode pulsars discussed in this paper. 

B0329 + 54 B1700 −32 B1804 −08 B2045 −16 B2111 + 46 

P (s) 0.71 1.21 0.16 1,96 1.01 
Ṗ −15 2.05 0.66 0.03 11.0 0.71 
χ ( ◦) 30 47 47 46 9 
B 12 1.2 1.3 0.07 3.6 0.7 
λ 10 4 60 4000 3500 110 
k (12) 1.3 1.1 1.2 1.1 1.2 
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 F O R M AT I O N  O F  TRIPLE  PROFILES  

aving determined, as we hope with sufficient accuracy, the number
ensity of the outflowing plasma, we can proceed to our main task,
amely, to determine the mean profiles formed by O-mode, taking
nto account its possible refraction due to a significant decrease in
he density of the secondary plasma near the magnetic axis. Here,
e follow Hakobyan & Beskin ( 2014 ) who developed a method of
etermining the shape of the radio image in the picture plane as a
unction of pulse phase φ. It gives the possibility to study the changes
f the size and the motion of the image along the picture plane. As to
he shape of the mean profile, it can easily be obtained by integrating
he intensity of the image in the picture plane. In addition, various
ocations of the emission region r rad and energetic spectrum of the
econdary plasma can also be considered. 

Thus, following Hakobyan & Beskin ( 2014 ) we assume that the
ntensity of radio emission is proportional to the plasma number
ensity n e ( r ) at the radiation point r which, in turn, can be easily
etermined knowing the number density profile ( 2 ) determined
bo v e. Indeed, the noticeable refraction of the O-mode takes place
nly at small distances from the star r < r O , where (Barnard & Arons
986 ; Beskin et al. 1988 ) 

 O ∼ 10 2 R λ
1 / 3 
4 γ

1 / 3 
100 B 

1 / 3 
12 ν

−2 / 3 
GHz P 

1 / 5 . (81) 

or the pulsars we are considering, these distances are hundreds of
imes less than the radius of the light cylinder R L = c /  ∼ 10 4 R . This
llows us to restrict ourselves to the model of rigidly rotating dipole
hich, in turn, makes it trivial to find the number density n e at any
oint within open field line region. Finally, as for all O-mode pulsars
isted in Table 1 the inclination angles are not too close to 90 ◦, we
an assume the axisymmetric distribution of the number density of
he outflowing plasma, i.e. that g = g ( r ⊥ 

). 
Accordingly, the refraction of the O-mode and, hence, the mean

rofile of the observed radiation also depends significantly on the
lasma number density. Thus, the density profile of the outflowing
lasma ( 2 ) is our first most important parameter of the problem
nder consideration. We emphasize once again that, in contrast to
ll previous works, the density profile discussed here is not a free
arameter, but is determined self-consistently. 
Figs. 9 show the density profiles λg ( r ⊥ 

) = ( λ I + λII ) g ( r ⊥ 

) of
ve O-mode pulsars listed in Table 4 . Dashed lines correspond to
tting curves used in further calculations. As we see, in all cases the
ependence g( r ⊥ 

) ∝ r 3 ⊥ 

for small r ⊥ 

is fulfilled with good accuracy.
s for the violation of this relation for two pulsars B0329 + 4544 and
1804 −08, this property, as was already noted, is due to their small
eriods P . In addition, Table 4 contains the values of the multiplicities
and the factors k ( 12 ) which determine power dependency γ ( r ⊥ 

) ∝
 

−1 
⊥ 

( 12 ); this relation, as shown abo v e, is e x ecuted with good
ccuracy. 

The second key parameter is the width of the beam for each
adiating element relative to the direction of the magnetic field, θ rad .

e took this angle to be θ rad = γ −1 ( r ⊥ 

), where γ ( r ⊥ 

) is the mean
NRAS 526, 1633–1645 (2023) 
orentz-factor corresponding to given magnetic field line. Note that
he self-consistent dependence of the Lorentz-factor on r ⊥ 

is also
aken into account here for the first time. Thus, as we associate the
bserved radio emission with the outflowing secondary plasma, we
ssume in what follows that the radiation intensity is proportional to 

( θb ) = exp ( −γ 2 θ2 
b ) , (82) 

here again θb is the angle between the magnetic field line and the
irection of the beam propagation. 
Thus, due to the factor d( θ ) emission intensity of a chosen ray

an be gained only if a ray almost touches a field line. So, if one
ssumes that all radio emission is produced on a fixed height, only a
mall fraction of open field line region will be able to emit towards
bserver. In this case mean intensity profiles should be heavily
istorted and o v erall luminosity should be too weak. Therefore, a
road emission region model was chosen and an additional cutoff
actor which models inability to produce radiation far from the star
as introduced in a form: 

 ( r) = exp 

[
− r 2 

A 

2 R 

2 

]
. (83) 

ere A � 1 which implies a fairly e xtensiv e emission region. It
hould be stressed once again that while there is no specific emission
eight in this model, each ray gains its intensity in a small region
round specific height determined by the field lines geometry due to
( θ ) factor. 
If one also assumes that emission intensity in a given point of
agnetosphere is proportional to a plasma density, o v erall intensity

rom a one ray can be calculated as follows: 

 = 

∫ 
r ( l) 

g ( r ⊥ 

) h ( r)d( θ )d l (84) 

ere an integral is taken on a ray trajectory. 
Considering now parallel rays that simultaneously intersect a

creen (the picture plane) perpendicular to the direction toward the
bserver, we can, by integrating equations of geometric optics 

d r 
d l 

= 

∂ ( k/n 2 ) 

∂ k 
, 

d k 
d l 

= −∂ ( k/n 2 ) 

∂ r 
, (85) 

ack to the rotating neutron star, determine the relative intensity of the
ays passing through various points of the screen. Here, the refractive
ndex n 2 = n 2 ( n e , θb ) is determined by relation ( 1 ). Wherein, different
imes of the beginning of integration can be easily associated with
he observed phase of the pulse φ. In this work, we do not discuss
he shape of the image itself and its motion in the picture plane
see Hakobyan & Beskin 2014 for more detail), giving only the
ependence of the total intensity on the pulse phase φ. It should
lso be mentioned that here we do not take into account cyclotron
bsorption. 
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Figure 10. Comparison of the computed profiles with the observed profiles 
of pulsars, whose three-hump profile is formed by the ordinary O-mode. For 
each pulsar, all used parameters are indicated. 
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Using all the abo v e results now, we are ready to determine the
ean profile for each of the fiv e pulsars. The y are shown in Fig. 10 .
s one can see, in four out of five cases there is excellent agreement
etween the synthesized and observed three-hump profiles. And this 
s despite the fact that we have considered a fairly simple model of the
eneration of the radio emission. Hence, we can confidently conclude 
hat the central peak in triple pulsars, whose mean profile is formed
y the ordinary O-mode, can easily be explained by its refraction
n an inhomogeneous plasma outflowing along open magnetic field 
ines in the pulsar magnetosphere. 

As for the parameters used in modelling, we should make some
larifications. First of all, multiplicity parameters were taken suffi- 
iently larger than it follows from the theoretical calculation. That is
ue to the fact that only two generations of secondary particles were
aken into account. From the numerical calculations it follows that 

ultiplicity should be ∼10 5 to produce significant mean hump. The 
ther parameters used in program only slightly differ from given in
able 4 . 
Another uncertainty was related to inclination angle χ . As its 

alue is almost impossible to determine with enough precision it 
as chosen to match profile width with observational data. Finally, 
 magnetic field is also dependant on χ angle and thus can be only
stimated. 

 C O N C L U S I O N  

hus, in the development of the idea proposed by Lyubarskii &
etrova ( 1998 ) and Petrova & Lyubarskii ( 2000 ), we have shown that

he triple mean profiles of radio pulsars can be easily explained by
he refraction of the ordinary O-mode in the pulsar magnetosphere. 
he essential advance here was that we used much more realistic
article number density and energy profiles than have been done so
ar. 

It should be stated once again, that the main goal of this numerical
tudy was to show qualitative similarity between observations and 
roposed theory. Quantitative correspondence is not feasible within 
his framework because some important effects were not considered. 
irst of all, it does not follow from anywhere that the radio emission
rofile repeats the density of the emitting plasma. Further, the 
implest model of a rotating dipole was used, which is obviously
ot valid for millisecond pulsars. Finally, it must be mentioned that
ere we did not take into account cyclotron absorption, Which, as is
ell known (Melrose & Luo 2004 ; Beskin & Philippov 2012 ), can

ignificantly distort the mean profile. We intend to take into account
ll these circumstances in the next work. 

Separately, it should be noted that a quadrupole (Barnard & Arons
982 ) or small-scale (Kantor & Tsygan 2003 ; Barsukov, Goglichidze 
 Tsygan 2016 ) magnetic field can significantly affect the plasma

ensity profile. Ho we ver, this issue requires a separate detailed study.
herefore, here we confine ourselves to only one remark about the
onditions for a significant change in the curvature of the magnetic
eld lines in the plasma generation region. 
As shown in Appendix A , the influence of a quadrupole magnetic

eld remains negligible for small enough ratio b q = B q / B 0 < 0.1. In
his case, the field line passing through the ‘polar cap’ on the surface
f the neutron star, at large distances, where the field can already
e considered purely dipole, shifts only within 10 per cent of the
ize of the open field line boundary. On the other hand, for larger
alues of b q > 0.1, the curvature radius R c at the base of open field
ines becomes almost constant; in this case our consideration already 
eases to be fair. 
MNRAS 526, 1633–1645 (2023) 
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Summing up, we note that despite all the simplifications made in
ur work, we managed to achieve a fairly good agreement between
he predictions of the theory and the observational data. We hope
hat in the future this line of research will indeed make it possible
o reproduce the average profiles of radio pulsars with sufficient
ccuracy , and, consequently , to determine the physical conditions in
he region of their generation. 
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PPENDI X  A :  QUA D RU P O L E  C O R R E C T I O N  

n this appendix, we consider only the plane containing the dipole
nd quadrupole axes; as the magnetic field lines also lie in this plane,
he question of their curvature is greatly simplified. Indeed, for a
lane curve, the curvature radius of the magnetic field line can be
ritten as (Korn & Korn 1968 ) 

 c = 1 / | ( h ∇) h | = 1 / | h × [ ∇ × h ] | 
= 

r 

| h θ + r ∂ h θ / ∂ r − ∂ h r / ∂ θ | , (A1) 

here h is the unit vector along the magnetic field line ( h = B /B).
sing now the explicit expressions for the dipole and quadrupole
agnetic fields 

 r = B 0 cos θ
R 

3 

r 3 
+ B q [3 cos 2 ( θ − θ0 ) − 1] 

R 

4 

2 r 4 
, 

 θ = B 0 sin θ
R 

3 

2 r 3 
+ B q sin ( θ − θ0 ) cos ( θ − θ0 ) 

R 

4 

r 4 
, (A2) 

here θ0 is the inclination angle of the quadrupole axis to the dipole
agnetic axis, it is possible to determine both the unit vector h (and,

ence, the curvature of the magnetic field lines) and the shape of
he polar cap on the surface of the pulsar. Here, we assume that the
egion of open field lines at large distances from the neutron star
oincides with one for a pure dipole. 

As expected, the additional quadrupole magnetic field results
n a shift of the ‘zero’ magnetic field line, i.e. that field line
hich has infinite curvature radius at its base r = R . As shown in
ig. A1 , significant shift occurs when the ratio b q = B 0 / B q exceeds
0 per cent. 
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Figure A1. Curvature radius R c at the base of the field lines (i.e. for r = R ) 
as a function of their angle θ at large distance r = 100 R, where the field can 
be considered purely dipole. 
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