
MNRAS 510, 2572–2582 (2022) https://doi.org/10.1093/mnras/stab3575 
Advance Access publication 2021 December 14 

Pulsar death line revisited – I. Almost vacuum gap 

V. S. Beskin 

1 , 2 ‹ and P. E. Litvinov 

2 

1 P.N.Lebedev Physical Institute, Leninsky prosp., 53, Moscow, 119991, Russia 
2 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Institutsky per. 9, 141700, Russia 

Accepted 2021 December 3. Received 2021 October 23; in original form 2021 June 18 

A B S T R A C T 

In this paper, which is the first in a series of papers devoted to a detailed analysis of ‘the death line’ of radio pulsars, we consider 
a possibility of producing secondary particles at a sufficiently long pulsar period P . To this end, we reconsidered the potential 
drop necessary for secondary plasma generation in the inner gap o v er magnetic polar caps. Our research made it possible to 

refine the conditions for generating secondary plasma, such as the multiplicity of the production of secondary particles and 

their spatial distribution. Our research also made it possible to further quantitatively analyse the dependence of the possibility 

of secondary plasma generation on all parameters, including the inclination angle of the magnetic axis to the rotation axis, the 
polar cap size and the magnetic field geometry. 
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 I N T RO D U C T I O N  

ccording to our modern understanding of the phenomenon of
adio pulsars, their radio emission is associated with secondary
lectron–positron plasma generated in the polar regions of a neutron
tar (Sturrock 1971 ; Ruderman & Sutherland 1975 ; Arons 1982 ;
orimer & Kramer 2012 ; Lyne & Graham-Smith 2012 ). It is therefore
ot surprising that the cessation condition of the generation of
econdary particles is associated with the so-called ‘death line’ on
he P –Ṗ (or P –B 0 ) diagram, where P is the pulsar period, and B 0 is
he magnetic field at the magnetic pole. 

Detailed works devoted to the generation of secondary plasma have
een underway since the beginning of the eighties (Daugherty &
arding 1982 ; Gurevich & Istomin 1985 ; Arendt & Eilek 2002 ;

stomin & Sobyanin 2007 ; Medin & Lai 2010 ; Timokhin 2010 ;
imokhin & Arons 2013 ; Philippo v, Spitko vsk y & Cerutti 2015 ;
imokhin & Harding 2015 ; Cerutti, Philippov & Spitkovsky 2016 ).
evertheless, up to now, a large number of different options are
iscussed in the literature (Ruderman & Sutherland 1975 ; Bland-
ord & Scharlemann 1976 ; Arons 1982 ; Usov & Melrose 1995 ),
eading to very different conditions which set ‘the death line’ of
adio pulsars (Chen & Ruderman 1993 ; Zhang, Harding & Muslimov
000 ; Hibschman & Arons 2001 ; Faucher-Gigu ́ere & Kaspi 2006 ;
onar & Deka 2019 ). 
In this and the following article, we set ourselves the task of

econsidering all basic approximations usually used in constructing
he secondary plasma production model, but which may work poorly
ear ‘the death line’. In particular, we assume that due to irregularity
f the secondary plasma production, almost the entire region of
pen field lines can be considered in a vacuum approximation:
e = 0. In other words, our task is to clarify the position of ‘the
eath valley’ (Chen & Ruderman 1993 ) using modern models of the
agnetosphere structure and the deceleration of a neutron star; the

atter is necessary to quantify the period deri v ati ve Ṗ in terms of P ,
 E-mail: beskin@lpi.ru R

Pub
 0 , and the inclination angle χ . The effects of general relativity will
lso be taken into account. 

Please note that in this work, the ‘classical’ mechanism of the
article production is considered due to the single-photon conversion
f the γ -quantum into an electron–positron pair in a superstrong
agnetic field. As is well known (Sturrock 1971 ; Ruderman &
utherland 1975 ), this process includes primary particle acceleration
y a longitudinal electric field, emission of γ -quanta due to curvature
adiation, production of secondary electron–positron pairs, and,
nally, secondary particle acceleration in the opposite direction,
hich also leads to the creation of secondary particles. In other words,
e do not consider particle production due to Inverse Compton
cattering, which, as is well known (Blandford & Scharlemann 1976 ;
hang et al. 2000 ), can also be a source of hard γ -quanta. As an
xcuse, we note that we will first of all be interested in old pulsars,
n which the surface temperature may not be high enough to form a
ufficient number of X-ray photons. 

For the same reason, we do not take into consideration synchrotron
hotons emitted by secondary pairs. The point is that, as is well
no wn (see, e.g. Gure vich & Istomin 1985 ; Istomin & Sobyanin 2007
nd section 3.1 below), the energy of synchrotron photons emitted
y secondary particles is approximately 15–20 times less than the
nergy of curvature photons emitted by primary particles. Therefore,
ear the threshold of particle production, when the free path length of
urvature photons become close to the radius of the star R , the pulsar
agnetosphere appears to be transparent for synchrotron photons. 
Let us recall that the cessation condition for the pair creation deter-
ining ‘the death line’ was first e v aluated by Ruderman & Sutherland

 1975 ) from the equality of the height of the 1D vacuum gap 

 RS ∼
(

� 

m e c 

)2 / 7 (
B 0 

B cr 

)−4 / 7 

R 

3 / 7 
L R 

2 / 7 
c (1) 

nd the polar cap radius 

 cap ≈
(

�R 

c 

)1 / 2 

R. (2) 
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ere B cr = m 

2 
e c 

3 /e� = 4 . 4 × 10 13 G is the Schwinger magnetic
eld, R L = c / � is the radius of the light cylinder ( � = 2 π / P is the
tar angular velocity) and R c is the curvature of the magnetic field
ines near the magnetic pole. For the magneto-dipole energy losses 

 tot ∼ B 

2 
0 �

4 R 

6 

c 3 
(3) 

nd the dipole magnetic field stricture, when 

 c = 

4 

3 

r 

θm 

, (4) 

 r and θm are the polar coordinates relative to the magnetic axis, r
s the distance from the star center), one can obtain for ‘the death
ine’ (Ruderman & Sutherland 1975 ) 

˙
 −15 = βd P 

11 / 4 , (5) 

here Ṗ −15 = 10 15 Ṗ and βd ∼ 1. 
It is clear that in the mid 70s, such accuracy was quite acceptable,

specially since expression (5) was really limited from below most 
f the pulsars in the P –Ṗ diagram. Ho we ver, as was already shown
y Chen & Ruderman ( 1993 ), the standard RS model (dipole
agnetic field, etc.) gives a very large period deri v ati ve Ṗ for the

bserved ‘death line’. That is why the idea was put forward to
onsider a more complex structure of the magnetic field resulting in 
 decrease of the period deri v ati ve (and leading to the appearance of
a death v alley’). Ho we ver, as was already emphasized, the observed
eriod deri v ati ve Ṗ can be af fected by many other reasons (masses
nd radii of neutron stars, the size of the polar cap, the effects of
eneral relativity), which were not considered in the qualitative 
nalysis carried out by Chen & Ruderman ( 1993 ). In particular,
ithin the framework of this model, the simplest magnetodipole 

ormula was used to determine the period deri v ati ve Ṗ , which, as it
s now clear, does not correspond to reality. Therefore, one of the
ain tasks of our consideration is the question of what parameters 

an lead to a decrease in the observed deceleration rate Ṗ . 
To clarify this issue, we consider an almost vacuum gap model 

f the polar region. Remember that all modern models of particle 
eneration (including recent PIC simulations) implicitly assume free 
jection of particles from the neutron star surface. Consequently, 
ne could expect that the potential drop would be close to that
redicted in the Arons ( 1982 ) model, i.e. much smaller than in
he vacuum gap Ruderman–Sutherlend model. Ho we ver, as was 
hown in recent works performed in the PIC simulation (Timokhin 
010 ; Philippo v, Timokhin & Spitko vsk y 2020 ), due to strong non-
tationarity, vacuum regions appear from time to time, with the 
otential drop being close to the vacuum gap model. Particularly, 
uch an assumption is natural for the pulsars located near ‘the death
ine’. In this case, the beginning of the cascade (and, hence, the
lling of this region with a secondary electron–positron plasma) 
an be initiated by the cosmic gamma background, which, as is
nown, leads to 10 5 –10 8 primary particles per second in the polar
ap region (Shukre & Radhakrishnan 1982 ). 

On the other hand, for the pulsars in the vicinity of ‘the death
ine’, the free path length l γ of γ -quanta leading to the production of
econdary particles can be of the order of star radius R (the scale of
he diminishing of the dipole magnetic field), i.e. much larger than 
he transverse size of the polar cap R cap ∼ 0.01 R . Therefore, we need
o determine 3D potential resulting in the acceleration of primary 
articles. 
Let us note straight away that below we consider only a dipole
agnetic field despite a large number of works which indicated that 

t is impossible to explain ‘the death line’ in a dipole magnetic
eld (Arons 1993 ; Asseo & Khechinashvili 2002 ; Barsukov &
sygan 2010 ; Igoshev, Elfritz & Popov 2016 ; Bilous et al. 2019 ). In
ther words, one of our tasks is to verify the possibility of explaining
he position of ‘the death line’ by other factors which are usually
ot considered when analysing the processes of secondary plasma 
roduction. Among such possible factors, one can indicate a decrease 
n the magnetic field with distance from the star, the possibility of
roducing secondary pairs by γ -quanta whose energy is much larger 
han the typically used characteristic energy of the maximum of the
pectrum, as well as the fact that secondary plasma is generated
n field lines located closer to the magnetic axis than gamma-ray
mitting particles. All these effects become significant near ‘the death 
ine’ when the free pass length of γ -quanta becomes comparable to
he radius of a neutron star. The role of the non-dipole magnetic field
nd all the other physical parameters which can affect the position
f ‘the death line’, will be discussed in detail in Paper II. 
As for Paper I, which is the first in a series of papers devoted to a

etailed analysis of ‘the death line’ of radio pulsars, it is devoted to
he possibility of producing secondary particles at sufficiently large 
eriods P . In Section 2, we construct an exact three-dimensional
olution for a longitudinal electric field E � in the polar regions of a
eutron star in the case when plasma is absent in the entire region of
pen field lines. We show that in real dipole geometry for non-zero
nclination angles χ , the longitudinal electric field decreases much 
lower than previously assumed. In addition, the corrections related 
o the effects of general relativity are determined. Further in Section 3,
e show that close to ‘the death line’ a major role in particle creation
egin to play those γ -quanta whose energy is several times greater
han the commonly used characteristic energy of curvature radiation. 
inally, in Section 4, the generation of secondary electron–positron 
airs near ‘the death line’ is considered when the second-generation 
articles produced by the conversion of synchrotron photons can be 
eglected. Section 5 is devoted to the conclusion and discussion. 

 ALMOST  VAC U U M  G A P  

.1 Potential drop 

o begin with, we revise the electric potential ψ o v er the polar cap
ssuming that near ‘the death line’, almost all plasma goes away so
hat one can put ρe = 0 everywhere within the open magnetic field
ine region. As in the rotation reference frame, the first Maxwell
quation has a form (Ruderman & Sutherland 1975 ) 

 E = 4 π ( ρe − ρGJ ) , (6) 

here 

GJ = − �B 

2 πc 
(7) 

s the Goldreich & Julian ( 1969 ) charge density, the electric potential
 must satisfy the relation 

 

2 ψ = −2 
�B 

c 
(8) 

ith the boundary conditions 

( star surface ) = 0 , (9) 

( separatrix ) = 0 . (10) 

s is well known (see, e.g. Beskin 2010 for more detail), the
rst boundary condition is related to the assumption of the high
onductivity of a neutron star surface. The second condition on 
MNRAS 510, 2572–2582 (2022) 
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he separatrix separating the regions of open and closed field lines
ollows from the assumption that in the closed field line region, there
s enough plasma to screen the longitudinal electric field. Note also
hat, despite the fact that the shape of the polar cap is not circular
t non-zero inclination angles, we restrict ourselves to considering
nly the case of a circular polar cap. 
In real dipole geometry, when B = [3( nm ) n − m ]/ r 3 , equation (8)

ooks like 

1 

r 2 

∂ 

∂r 

(
r 2 

∂ψ 

∂r 

)
+ 

1 

r 2 sin θ

∂ 

∂θ

(
sin θ

∂ψ 

∂θ

)
+ 

1 

r 2 sin 2 θ

∂ 2 ψ 

∂ϕ 

2 

= −2 
�B 0 

c 

R 

3 

r 3 

(
cos θ cos χ + 

3 

2 
sin θ sin ϕ sin χ

)
, (11) 

here χ is the inclination angle. Then for the circular shape of the
olar cap, the boundary conditions (9)–(10) have a form 

( r = R, θ, ϕ) = 0 , (12) 

( r , θ = θ0 ( r ) , ϕ) = 0 , (13) 

here for small angles θ

0 ( r) = 

(
rR 

2 
0 

R 

3 

)1 / 2 

. (14) 

ere 

 0 = f 1 / 2 ∗

(
�R 

c 

)1 / 2 

R (15) 

s the polar cap radius, and we introduce standard dimensionless area
 ∼ 1. 

For zero longitudinal electric currents, the dimensionless area of
 polar cap f ∗ changes from f ∗ = 1.59 for χ = 0 ◦ to f ∗ = 1.96 for
= 90 ◦ (Michel 1973 ; Beskin, Gurevich & Istomin 1983 ). Modern

umerical simulations show that f ∗ changes from f ∗ = 1.46 for χ =
 

◦ to f ∗ = 1.75 for χ = 90 ◦ (Gralla, Lupsasca & Philippov 2017 ).
he convenience of introducing a dimensionless area f is due to the

act that in a dipole field for small angles, 

= f 1 / 2 
(

�r 

c 

)1 / 2 

, (16) 

o that f is constant along the dipole magnetic field line. 
As a result, the solution of equation (11) looks like 

 = 

1 

2 

�B 0 R 

2 
0 

c 
cos χ ×[ 

1 − θ2 

θ2 
0 ( r) 

−
∑ 

i 

c 
(0) 
i 

( r 

R 

)−λ
(0) 
i 

/θ ′ 
0 
J 0 

(
λ

(0) 
i θ/θ ′ 

0 

)] 

+ 

3 

8 

�B 0 R 

2 
0 

c 
sin ϕ sin χ ×[ 

θ − θ3 

θ2 
0 ( r) 

− θ ′ 
0 

∑ 

i 

c 
(1) 
i 

( r 

R 

)−λ
(1) 
i 

/θ ′ 
0 
J 1 

(
λ

(1) 
i θ/θ ′ 

0 

)] 

. (17) 

ere ∑ 

c 
(0) 
i J 0 

(
λ

(0) 
i x 

)
= 1 − x 2 (18) 

nd λi are the zeros of the Bessel function J 0 ( x ): 
(0) 
1 = 2 . 4 , λ(0) 

2 = 5 . 5 , λ(0) 
3 = 8 . 65 , λ(0) 

4 = 11 . 8 , . . . (19) 

ccordingly, λ(1) 
i are the zeros of the Bessel function J 1 ( x ): 

(1) 
1 = 3 . 8 , λ(1) 

2 = 7 . 0 , λ(1) 
3 = 10 . 2 , λ(1) 

4 = 13 . 3 , . . . (20) 
NRAS 510, 2572–2582 (2022) 
nd ∑ 

c 
(1) 
i J 1 

(
λ

(1) 
i x 

)
= x − x 3 . (21) 

ince all the terms under the sum signs in (17) rapidly decrease with
ncreasing r , we put here θ ′ 

0 = θ0 ( R) = const. 
It is instructive to stress that for the symmetric ( ϕ-independent)

art, one can obtain ∑ 

c 
(0) 
i = 1 , (22) 

∑ 

c 
(0) 
i 

(
λ

(0) 
i 

)2 
J 0 ( λi x) = 4 , (23) 

he last condition resulting from (8). In particular, for x = 0, we have ∑ 

c 
(0) 
i 

(
λ

(0) 
i 

)2 
= 4 . (24) 

Unfortunately, the second series (23) converges very slowly (see
ppendix A). For this reason, in what follows, we restrict ourselves

o only the first four terms c (0) 
i for which the coefficients c (0) 

1 and c (0) 
2 

oincide with the precisely calculated values, and the two remaining
nes are selected to satisfy relations (22) and (24). As a result, we
btain 

 

(0) 
1 = 1 . 09 , c (0) 

2 = −0 . 11 , c (0) 
3 = 0 . 028 , c (0) 

4 = −0 . 0075 , (25) 

o that 
∑ 

c 
(0) 
i = 1 . 00 and 

∑ 

c 
(0) 
i ( λ(0) 

i ) 2 = 4 . 03. As shown in Ap-
endix A, in some respects, these four terms (25) approximate
he constant (23) even better than twenty exact coefficients c (0) 

i ; in
articular, the sum of the first twenty terms of the series (24) results
n 3.37 instead of 4. 

Accordingly, for anti-symmetric ( ϕ-dependent) part, equation (8)
ives ∑ 

c 
(1) 
i 

(
λ

(1) 
i 

)3 
J 1 ( λi x) = 8 x. (26) 

ogether with (21) in the limit x → 0 it gives ∑ 

c 
(1) 
i λ

(1) 
i = 2 , (27) 

∑ 

c 
(1) 
i 

(
λ

(1) 
i 

)3 
= 16 . (28) 

estricting ourselves to the four terms of the series, we again
etermine the first two coefficients c (1) 

1 and c (1) 
2 equal to the exactly

alculated values (see Appendix A) and the two remaining ones due
o the relations (27) and (28). This approximation gives 

 

(1) 
1 = 0 . 70 , c (1) 

2 = −0 . 14 , c (1) 
3 = 0 . 044 , c (1) 

4 = −0 . 0089 , (29) 

o that 
∑ 

c 
(1) 
i λ

(1) 
i = 2 . 00 and 

∑ 

c 
(1) 
i ( λ(1) 

i ) 3 = 16 . 03. As shown in
ppendix A, the four terms (29) approximate the linear function

26) even better than the twenty exact coefficients c (1) 
i not to say

hat the sum of the first twenty terms of the series (28) results in 84
nstead of 16. 

As a result, we obtain for the potential ψ( l ) as a function of the
istance l along the magnetic field line f = const 

( l) = 

1 

2 

�B 0 R 

2 
0 

c 
cos χ ×

[ 

1 − f 

f ∗
−

∑ 

i 

c 
(0) 
i 

(
l 

R 

)−λ
(0) 
i 

/θ0 

J 0 

(
λ

(0) 
i 

√ 

f /f ∗
)] 

+ 

3 

8 

�B 0 R 

3 
0 

cR 

sin ϕ sin χ

[ (
f 

f ∗

)1 / 2 (
1 − f 

f ∗

)(
l 

R 

)1 / 2 

−
∑ 

i 

c 
(1) 
i 

(
l 

R 

)−λ
(1) 
i 

/θ0 

J 1 

(
λ

(1) 
i 

√ 

f /f ∗
)] 

. (30) 
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2 of a particle accelerated from the 

surface of a neutron star obtained by solving the equation (35) for two values 
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ere we can put θ0 = R 0 / R = const. Accordingly, the longitudinal
lectric field E � = −∂ ψ / ∂ l looks like 

 ‖ = −1 

2 

�B 0 R 0 

c 
cos χ ×

∑ 

i 

c 
(0) 
i λ

(0) 
i 

( r 

R 

)−λ
(0) 
i 

/θ0 −1 
J 0 

(
λ

(0) 
i θ/θ0 

)

− 1 

4 

�B 0 R 0 

c 

R 0 

R 

sin ϕ sin χ ×
∑ 

i 

c 
(1) 
i λ

(1) 
i 

( r 

R 

)−λ
(1) 
i 

/θ0 −1 
J 1 

(
λ

(1) 
i θ/θ0 

)

− 3 

16 

(
f 

f ∗

)1 / 2 (
1 − f 

f ∗

)
�B 0 R 

3 
0 

cR 

2 

(
l 

R 

)−1 / 2 

sin ϕ sin χ. 

(31) 

Here the following points should be stressed. 

(i) The expression 

( r, θ, ϕ) = 

1 

2 

�B 0 R 

2 
0 

c 

[
1 − θ2 

θ2 
0 ( r) 

]
cos χ (32) 

+ 

3 

8 

�B 0 R 

2 
0 

c 

[
θ − θ3 

θ2 
0 ( r) 

]
sin ϕ sin χ

n (17) is indeed the exact asymptotic solution at large distances from
he star surface ( r − R ) 
 R 0 in the dipole magnetic field (certainly,
n the limit θ � 1). 

(ii) At large distances ( r − R ) 
 R 0 , the magnetic field lines
( r ) ∝ r 1/2 become equipotential only for the symmetric component
f the potential ψ . For the anti-symmetric ( ϕ-dependent) part 
ealizing for any oblique rotator with χ 
= 0 ◦, the longitudinal electric
eld decreases on the scale of the star radius R , not the polar cap
adius R 0 . We emphasize that this effect does not exist for a model of
he conical geometry of open magnetic field lines when θ0 = const. 

(iii) As a result, one can obtain for the anti-symmetric component 
f the potential 

( l) = 

3 

8 

(
f 

f ∗

)1 / 2 (
1 − f 

f ∗

)
�B 0 R 

3 
0 

cR 

(
l 

R 

)1 / 2 

sin ϕ sin χ, (33) 

here again l denotes the coordinate along the magnetic field line, 
nd we use the dimensionless area 0 < f < f ∗. As we see, the additional
otential drop within the light cylinder ψ( l = R L ) is the same as the
haracteristic vacuum potential within the polar cap. 

(iv) Accordingly, the additional parallel electric field looks like 

 

add 
‖ = − 3 

16 

(
f 

f ∗

)1 / 2 (
1 − f 

f ∗

)
�B 0 R 

3 
0 

cR 

2 

(
l 

R 

)−1 / 2 

sin ϕ sin χ. 

(34) 

(v) Previously, no one paid attention to the existence of an 
dditional longitudinal field for the case of an oblique rotator when 
he dependence of the boundary of the region of open field lines
n the distance to the star becomes significant. In particular, in the
 amous w ork of Muslimov & Tsygan ( 1992 ), a change of variables
= θ / θ0 ( r ) was made when solving the equation (11), but in what

ollows, the dependence θ0 ( r ) on r was not taken into account. 

.2 Particle acceleration 

he most important result obtained in the previous section is that, 
or the non-zero inclination angle χ , there is the longitudinal electric 
eld E � (34) which decreases not on the polar cap scale R 0 but on the
cale of the radius r up to the light cylinder. As a result, it produces a
ignificant effect on the motion of particles, which, as is well known,
s described by the equation 

d E e 
d l 

= e E ‖ − 2 

3 

e 2 

R 

2 
c 

( E e 
m e c 2 

)4 

. (35) 

ere R c is the curvature radius of the magnetic field line. For θ � 1
i.e. for l � R L ), one can put 

 c ≈ 4 

3 
f −1 / 2 R 

1 / 2 
L l 1 / 2 . (36) 

It should be immediately noted that due to the additional factor
 0 / R , this component of the longitudinal electric field becomes
ignificant near the surface of the neutron star for the inclination
ngles cos χ ∼ R 0 / R only. Fig. 1 shows the values of the Lorentz-
actor γ = E e /m e c 

2 of a particle accelerated from the surface of a
eutron star from the point f = 0.7 and ϕ = 90 ◦ obtained by solving
he equation (35) for two values of the pulsar period P = 0.3 s (upper
urves) and P = 1 s (lower curves) for small ( χ = 30 ◦, top) and large
 χ = 85 ◦, bottom) inclination angles. The dashed lines show the
olutions in which the additional electric field ( 34) is neglected. As
e see, the role of the additional electric field becomes noticeable
nly for almost orthogonal rotators. 
Ho we ver, for us, it is much more important that for pulsars with rel-

tively large periods P ∼ 1 s, i.e. just near ‘the death line’, the energy
osses of a particle described by the second term in the equation (35)
MNRAS 510, 2572–2582 (2022) 
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ecomes negligible. Therefore, the lower curves in Fig. 1 correspond
o the electric potential ψ( l ). For this reason, in what follows, for
uch pulsars, we can simply put E e ( l) = eψ( l) − eψ( l 0 ), where l 0 
orresponds to the particle creation point. For shorter periods P , the
article energy does not reach the maximum possible energy e ψ , and
ubsequently decreases with increasing the distance from the neutron
tar surface. 

.3 General relativistic correction 

s is well known, the effects of general relativity and, in particular,
he frame-dragging (Lense-Thirring) effect, under certain conditions,
an play a significant role in the generation of secondary plasma
ear the polar caps of the neutron star (Beskin 1990 ; Muslimov &
sygan 1992 ; Philippov et al. 2015 , 2020 ). For this reason, below,
e estimate all possible corrections which can affect the production
f secondary particles. For simplicity, we restrict ourselves to only
he first order in the small parameter r g / R , where r g = 2 GM / c 2 is the
lack hole radius. 
Starting from the time-independent Maxwell equation in the

otation reference frame (see Thorne, Price & Macdonald 1986 for
ore detail) 

 × ( αE + β × B + βR × B ) = 0 , (37) 

here α is the lapse function ( α2 ≈ 1 − r g / R ), β is Lense-Thirring
ector and βR = � × r /c, we obtain 

E + β × B + βR × B = −∇ψ. (38) 

or ρe = 0, this equation gives 

 

(∇ψ 

α

)
= 4 πρGJ , (39) 

here now the Goldreich–Julian charge density looks like 

GJ = − 1 

8 π2 
∇ k 

(
� − ω 

αc 
∇ 

k � 

)
. (40) 

As we see, the first relativistic correction (1 − ω/ �) appears in the
xpression for ρGJ , where the ratio ω/ � depends on the neutron star
oment of inertia I r ∼ MR 

2 : 

ω 

�
= 

I r r g 

M r 3 
. (41) 

hus this correction just corresponds to a small value ∼r g / R under
onsideration. To determine the relativistic corrections, we chose the
alues M = 1 . 4 M � for neutron star mass, R = 12 km for that radius
nd I r = 150 M �km 

2 for the moment of inertia (Greif et al. 2020 ).
otably, the characteristic scale of the changes in all the relativistic

orrections are R , in contrast, the scale of change in ψ is R 0 � R .
herefore, one can consider all relativistic corrections as constants,

.e. we can put r = R in (41). The second relativistic correction
ppears in the expression for the magnetic field flux 

 = 2 π | m | sin 2 θm 

r 

(
1 + 

3 

4 

r g 

r 

)
. (42) 

s for small angles θm , one can put sin θm = r ⊥ 

/ r , i.e. to write down 

 

2 = 

� 

2 π | m | y 
3 

(
1 + 

3 

4 

r g 

y 

)−1 

, (43) 

here x = r ⊥ 

and y = r , we obtain for the curvature radius R c ≈ 1 /y ′′ xx 

he following correction R c, GR = K cur R c , where 

 cur = 

(
1 − 1 

2 

r g 

R 

)
. (44) 
NRAS 510, 2572–2582 (2022) 
ext, for the polar cap radius R 0, GR = K cap R 0 , we have 

 cap = 

(
1 − 3 

8 

r g 

R 

)
. (45) 

inally, equation (39) looks now like 

α2 

r ⊥ 

∂ 

∂r ⊥ 

(
r ⊥ 

∂ψ 

∂r ⊥ 

)
+ 

∂ 2 ψ 

∂z 2 
= −2 �B 0 

c 

(
1 + 

3 

4 

r g 

R 

)(
1 − ω 

�

)
. 

(46) 

s a result, we obtain the general relativistic correction for the
ymmetric potential ψ GR ( r ⊥ 

) = K ψ ψ( r ⊥ 

) at distances h > R 0 o v er
he star surface as 

 ψ = 

(
1 − ω 

�

)(
1 − r g 

R 

)−1 
. (47) 

Thus, as expected, we can conclude that the effects of general rela-
ivity lead to corrections at the level of 10–20 per cent. Consequently,
he corresponding corrections at first glance do not go beyond the
ncertainty in other quantities, such as, e.g. the radius and moment
f inertia of a neutron star. Ne vertheless, belo w, we include general
elativity corrections into consideration since, as will be shown, these
orrections lead to a significant change in the rate of production of
econdary particles. 

 G E N E R AT I O N  O F  C U RVAT U R E  P H OTO N S  

.1 Effecti v e photon energy 

he next point, which can be important in the vicinity ‘the death
ine’ is the question of the ef fecti ve energy of the curvature γ -quanta
eading to the production of the secondary pairs. Recall that in most
ases (see, e.g. Timokhin & Harding 2015 ), it was assumed that
ll the photons emitted by the relativistic electron with the energy
 e = γe m e c 

2 are radiated at the characteristic frequency 

 c = 

3 

2 

c 

R c 
γ 3 

e , (48) 

hich is larger than the maximum of the energy spectrum
 . 29 ω c (Landau & Lifshits 1971 ). Below, we show that the very
rst pairs are produced by even more energetic photons, whose
requencies are several times higher than the characteristic frequency
 c (48). 
Indeed, the spectrum of the curvature radiation (i.e. the energy

adiated in the frequency domain d ω at the distance d l ) 1 

 I = 

√ 

3 

2 π

e 2 

cR c 
γe F ( ω/ω c )d ω d l, (49) 

here 

 ( ξ ) = ξ

∫ ∞ 

ξ

K 5 / 3 ( x )d x , (50) 

 5/3 is the Macdonald function, and ξ = ω / ω c , has a rather long
ail. As a result, although a relativistic particle needs to travel a
ertain distance l rad for the emission of high-energy photons with ω

ω c , the free path length l γ of a γ -quantum before the creation of
 secondary electron–positron pair will be much shorter than for the
hotons radiated near the maximum. 
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Table 1. Tabulation of the inverse function ξ ( K) (60). 

K 30 100 300 10 3 3 · 10 3 10 4 3 · 10 4 10 5 

ξ 2.1 2.6 3.1 3.8 4.5 5.2 6.0 6.8 

Table 2. Values K and ξ for some pulsars located within ‘the death valley’. 
The pulsar parameters are taken from the ATNF catalog (Manchester et al. 
2005 ). 

PSR P (s) Ṗ −15 B 12 K ξ

J0250 + 5854 23.5 27.1 25 3.3 × 10 4 6.1 
J0418 + 5732 9.01 4.10 6.1 3.2 × 10 4 6.1 
J1210 − 6550 4.24 0.43 1.3 1.0 × 10 5 6.8 
J1333 − 4449 0.46 0.0005 0.016 3.3 × 10 6 9.5 
J2144 − 3933 8.51 0.50 2.1 6.6 × 10 5 8.2 
J2251 − 3711 12.1 13,1 12.5 1.4 × 10 4 5.5 
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Since in what follows, we are only interested in the photons with
requencies ω 
 ω c , one can use the following asymptotic behaviour 
f the Macdonald’s function (Abramowitz & Stegun 1965 ) 

 5 / 3 ( x) ≈
√ 

π

2 x 
e −x 

(
1 + 

91 

72 

1 

x 
+ . . . 

)
, (51) 

.e. consider only the two first terms of the expansion in terms of 1/ x .
ccordingly, with the same accuracy 

 ( x) ≈
√ 

πx 

2 
e −x 

(
1 + 

55 

72 

1 

x 
+ . . . 

)
. (52) 

Below, we need a general expression for an arbitrary dependence of 
he energy E e ( l) = γe ( l) m e c 

2 of the emitting particle on the distance
 . Assuming that a photon with the frequency ω 
 ω c can be emitted
f the total energy 

 ω = 

√ 

3 

2 π

e 2 

cR c 

∫ l 0 + l rad 

l 0 

∫ ∞ 

ω 

γe ( l ) F [ ξ ( l )] d ω d l , (53) 

adiated abo v e this frequenc y is equal to photon energy: E ω = � ω.
ere, ξ ( l) = (3 / 2)( c/R c ) γ 3 

e ( l), and l 0 is the radiation coordinate. For
he constant particle energy γ e = const, we have 

 ω = 

√ 

3 

2 π

e 2 

cR c 
ω c l rad γe 

∫ ∞ 

ξ

F ( ξ )d ξ. (54) 

Introducing finally a new variable 

′ = 

2 

3 

ωR c 

c 
γ −3 

e ( l) , (55) 

e obtain 

= 

√ 

3 

2 π

e 2 

� c 

∫ l rad 

0 

d l 

R c 
γe (0) 

γ 4 
e ( l) 

γ 4 
e (0) 

∫ ∞ 

ξ

F ( ξ ′ ) d ξ ′ , (56) 

here γ (0) = γ ( l 0 ) and γ ( l rad ) = γ ( l 0 + l rad ). Relation (56)
etermines implicitly the connection between l rad and ξ . In particular, 
or γ e = const, we obtain for the radiation length l rad 

 rad = 

√ 

8 π

3 

� c 

e 2 
R c γ

−1 
e 

√ 

ξ

(
1 − 91 

72 

1 

ξ
+ . . . 

)
e ξ . (57) 

Further, the free path length l γ of a photon can be written
s (Sturrock 1971 ; Ruderman & Sutherland 1975 ) 

 γ = 

8 

3 � 

R c 
B cr 

B 

m e c 
2 

� ω c 

1 

ξ
, (58) 

here � = 15–20 is the logarithmic factor: � ≈ � 0 − 3ln � 0 , where 

 0 = ln 

[ 

e 2 

� c 

ω B R c 

c 

(
B cr 

B 

)2 (
m e c 

2 

E ph 

)2 
] 

∼ 20 . (59) 

Minimizing now the sum l rad + l γ by the value ξ , one can obtain
he energy of a photon � ω = ξ� ω c producing the first secondary pair.
n particular, for the constant particle energy, we have the following 
elation to determine the value ξ

5 / 2 e ξ
(

1 − 55 

72 

1 

ξ
+ . . . 

)
= K, (60) 

here 

 = 

4 
√ 

2 

3 
√ 

3 π� 

B cr 

B 

R c 

a B 
γ −2 

e ≈ 40 R c , 7 B 

−1 
12 γ

−2 
7 . (61) 

ere, B 12 = B /(10 12 G), R c, 7 = R c /(10 7 cm), γ 7 = γ e /10 7 , and a B =
 

2 / m e e 2 = 5.3 × 10 −9 cm is the Bohr radius. Accordingly, the total
ength l tot = l rad + l γ in this case looks like 

 tot = 

8 

3 � 

B cr 

B 

m e c 
2 

ξ� ω c 

(
1 + 

1 

ξ

)
. (62) 

As shown in Table 1 , even for the characteristic parameters, the
ost ef fecti v e frequenc y ω = ξω c is indeed higher than ω c (48).
s for the pulsars located within ‘the death valley’, their effective

requency can be sufficiently higher. In Table 2 , we show the
arameters K and ξ for some of these pulsars. Their parameters 
ere taken from the ATNF catalog (Manchester et al. 2005 ), and the

ppropriate Lorentz-factors correspond to the potential drop ψ (30). 
s we see, for all these pulsars, the effect under consideration can

ndeed play a significant role. A detailed analysis of all the pulsars
ocated within ‘the death valley’ will be provided in Paper II. 

.2 Free pass 

hen determining the value of ξ , the accuracy in determining the
ogarithmic factor � is insignificant since equation (60) actually 
ives ξ ∼ ln K . On the other hand, near ‘the death line’, more
ccurate determination of the free path-length l γ is necessary. This, 
n particular, is due to the fact that l γ turns out to be comparable with
he radius of the star R , i.e. with the scale at which the magnetic field
f the neutron star decreases significantly; this was not taken into
ccount when deriving equation (47). For this reason, to determine 
he path length of a photon, we will use the exact expression for the
robability w l of the photon production at a length d l (Berestetsky,
ifshits & Pitaevsky 1971 ) 

 w l = 

3 
√ 

3 

16 
√ 

2 

e 3 B sin θb 

� m e c 3 
exp 

(
−8 

3 

B cr 

B( l ) sin θb ( l ) 

m e c 
2 

E ph 

)
d l, (63) 

here again B cr = m 

2 
e c 

3 /e� ≈ 4 . 4 × 10 13 G is the critical magnetic
eld, and θb is the angle between the magnetic field B and the wave
ector k . As a result, the free pass length l γ should be determined
rom the condition ∫ l γ

0 
d w l = 1 . (64) 

In conclusion, we note one more convenience of using the 
arameter � . Indeed, since in a not very strong magnetic field B 0 ∼
0 12 G, secondary particles at the time of birth mo v e at the angle θ

l γ / R c to the magnetic field lines, while their energy γ m e c 2 is to be
ne half of the energy of the curvature photon � ω cur (Beskin 1982 ;
augherty & Harding 1983 ), the ratio of the characteristic frequency
MNRAS 510, 2572–2582 (2022) 
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Table 3. Tabulation of the function L ( x 0 , x ⊥ , h ) (70) for x 0 = 0.6 and for 
dif ferent v alues x ⊥ . 

h / R 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.599 1.0 1.4 1.9 2.6 3.4 4.3 5.4 6.7 
0.59 1.5 2.0 2.7 3.4 4.3 5.4 6.6 8.1 
0.58 1.9 2.5 3.3 4.1 5.1 6.3 7.7 9.3 
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f a synchrotron photon ω syn = (3/2) θω B γ
2 to the frequency of a

urvature photon ω cur 

ω syn 

ω cur 
= 

3 

8 

B 0 

B cr 

� ω cur 

m e c 2 

l γ

R c 
(65) 

urns out to be exactly � 

−1 . Just for this reason, as was already
entioned abo v e, free path length of synchrotron photons is to be

5–20 times larger than free path length of the curvature photons.
herefore, near ‘the death line’, the role of synchrotron photons
hould not be significant. 

 G E N E R AT I O N  O F  S E C O N D  A R  Y  PA IR S  

.1 Outflow 

n general, we follow the approach developed by Hibschman & Arons
 2001 ). The main difference is that we analyse the dependence of the
umber density of secondary particles n ± on the distance r ⊥ 

from
he magnetic axis rather than the energy spectrum. 

Let us consider one primary particle moving along the magnetic
eld line intersecting the star surface at the distance r 0 from the axis.
t produces d N curvature photons in the frequency domain d ω at the
ath d h 

 N = 

√ 

3 

2 π

e 2 

cR c ( h ) 

γe F ( ω/ω c ) 

� ω 

d ω d h. (66) 

n the other hand, frequency ω determines the free path l γ =
 γ ( ω) which, in turn, determines the magnetic field line at which
he secondary pair is created 

 ⊥ 

= 

( 

1 − 3 

8 

l 2 γ

R 

2 

) 

r 0 , (67) 

here again r ⊥ 

is the distance from the axis at the star surface, and h
s the height of the γ -quanta emission. Note that in a dipole magnetic
eld, this expansion does not contain the corrections ∝ hl γ / R 

2 (and,
ertainly, it does not contain the term ∝ h 2 / R 

2 as r ⊥ 

= r 0 for l γ = 0).
As we sho w belo w, the leading term in (67) is enough for our

onsideration. On the other hand, in what follows, to determine with
he required accuracy the exponent in the pair creation probability
 l ( θb ) (63), we use the e xact e xpression for the angle θb between the
agnetic field B and the wave vector k . In a dipole magnetic field,

or γ -quanta radiated tangentially at the height h , it looks like 

b = 

3 

4 

r 0 l γ

R 

2 
f ( h ) , (68) 

here the correction function f ( h ) for θb � 1 is 

 ( h ) = 

(
1 + 

h 

R 

)1 / 2 (
1 + 

L ( h ) l 0 
R 

+ 

h 

R 

)−1 

. (69) 

ere, we introduce by definition another correction function L ( h ) as 

 γ ( l 0 , h ) = L ( h ) l 0 , (70) 

here 

 0 ( ω ) = 

32 

9 � 

R 

2 

r 0 

B cr 

B 0 

m e c 
2 

� ω 

(71) 

s the γ -quantum free pass length in the case l γ � R with the starting
oint h = 0. The coefficient L ( h ) due to the strong non-linearity of
he problem for h ∼ l 0 ∼ R should be determined numerically by
irect integration (64) ∫ l γ

0 
w l ( h ) d l = 1 (72) 
NRAS 510, 2572–2582 (2022) 
or probability w l ( h ) corresponding to the starting point h at which
he photon free pass length is equal to l γ (see Table 2 ). Certainly,
 → 1 for h → 0 and l γ → 0 ( r ⊥ 

→ r 0 ). Finally, for the primary
article moving along the magnetic field line, we have 

 c = 

4 

3 

R 

2 

r 0 

(
1 + 

h 

R 

)1 / 2 

. (73) 

As a result, one can write down for the r ⊥ 

distribution of the
econdary particles as 

 N = 

√ 

3 

2 π

e 2 

� c 

γe F ( ω/ω c ) 

R c ω 

d ω 

d r ⊥ 

d r ⊥ 

d h. (74) 

o determine the deri v ati ve d ω/d r ⊥ 

, one can rewrite the relation (67)
s 

l γ ( ω) 

R 

= 

2 
√ 

2 √ 

3 

( r 0 − r ⊥ 

) 1 / 2 

r 
1 / 2 
0 

. (75) 

t finally gives 

1 

ω 

d ω 

d r ⊥ 

= 

1 

2( r 0 − r ⊥ 

) 

(
1 − ω 

L 

d L 

d ω 

)−1 

. (76) 

ithin approximation (67) we consider, the value of L does not
epend on ω (both free path lengths l 0 and l γ are mainly determined
y the exponent, which both depend on ω as ω 

−1 ); therefore, below,
e do not take into account the logarithmic deri v ati ve ω/ L (d L / d ω).
As a result, we obtain for the linear distribution of secondary

article n ± d x ⊥ 

creating by one primary particle moving along the
agnetic field line with a foot point distance from the axis r 0 

 ±( r ⊥ 

) = 

3 
√ 

3 

16 π

e 2 

� c 

R 0 

R 

x 0 

( x 0 − x ⊥ 

) 

∫ H 

0 

d h 

R 

γe ( x 0 , h ) F ( ξ ) , (77) 

here now 

= 

64 
√ 

2 

27 
√ 

3 � 

B cr 

B 0 

R 

3 

λ̄λR 

2 
0 

( 1 + h/R ) 

γ 3 
e ( x 0 , h ) 

L ( x 0 , x ⊥ 

, h ) 

x 0 
√ 

x 0 
√ 

x 0 − x ⊥ 

. (78) 

ere, we introduce by definition two dimensionless parameters 

 0 = 

r 0 

R 0 
; x ⊥ 

= 

r ⊥ 

R 0 
. (79) 

s for the upper integration limit H , it can be set equal to infinity,
ince, as shown in Table 3 , the parameter L introduced abo v e
ncreases rapidly with increasing h . Therefore, already at h ∼ H ,
he integrand becomes exponentially small due to the large value of
he argument ξ (78). 

In Fig. 2 , we show secondary particle distributions n ±( r ⊥ 

) (77)
enerated by single primary particles with the starting points x 0 =
.4, x 0 = 0.6, and x 0 = 0.8 for P = 1 s, B 12 = 1, and χ = 0 ◦. The
nergy of the primary particles E e = γb m e c 

2 was determined from
he vacuum potential ψ (30). As we see, even though the maximum of
he distribution n ±(r ⊥ 

) lies near r 0 (i.e. the corresponding secondary
articles are born on practically the same field line as the primary
article), this distribution slowly decreases with increasing distance
 0 − r ⊥ 

. Consequently, with the parameters considered here, which
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Figure 2. Secondary particle distribution n ±( r ⊥ ) (77) generated by a single 
primary particle with the starting points x 0 = 0.4, x 0 = 0.6, and x 0 = 0.8 for 
P = 1 s, B 12 = 1, and χ = 0 ◦. 

Figure 3. Secondary particle distribution n ±( r ⊥ ) (77) generated by a single 
primary particle with the starting points x 0 = 0.6 near the threshold x ⊥ = x 0 . 

a  

p  

o  

o
s

 

p  

d  

e  

t

(

w

A

H  

P  

A  

n  

f

l

c

Table 4. Multiplicity λ for P = 1 s, B 12 = 1, and χ = 30 ◦. 

x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
λ 0 36 157 305 382 350 209 42 0 
λGR 7 173 498 829 995 1040 663 220 3 

Figure 4. 2D distribution of secondary particle multiplicity λ( x ⊥ ) = ( n + + 

n −)/ n prim 

(84) generated by the homogeneous primary particle distribution 
n prim 

= 1 for an ordinary pulsar ( P = 1 s, B 12 = 1, χ = 30 ◦). The right shifted 
distribution corresponds to multiplicity λGR ( x 0 ) presented in Table 4 . 
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re close to ‘the death line’, a significant part of the secondary
articles will be produced at distances h , comparable to the radius
f the star R . That is why we do not consider further the production
f secondary plasma associated with the synchrotron radiation of 
econdary particles. 

On the other hand, it is clear that n ± = 0 for x ⊥ 

= x 0 . As for the
osition of the maximum in the distributions n ±, they can be easily
etermined by setting argument (78) as ξ = 1 so that F ( ξ ) becomes
xponentially small for ξ > 1. Moreover, using the potential ψ (30)
o determine γ b , one can write down the condition ξ = 1 as 

 x 0 − x ⊥ 

) = x −3 
0 A , (80) 

here 

 = 

2 7 

3 9 � 

2 

B 

2 
cr 

B 

2 
0 

R 

6 

λ̄λ2 R 

4 
0 

γ −6 
b ≈ 6 × 10 −5 P 

14 B 

−8 
12 . (81) 

ere, we took into account that L ≈ 1 for x ⊥ 

→ x 0 . Therefore, for
 = 1 s and B 12 = 1 (and for x 0 = 0.6), we obtain x 0 − x max ≈ 0.003.
s shown in Fig. 3 , this evaluation is in good agreement with our
umerical result. Using now relation (75), we obtain that the smallest
ree path length 

 γ, min = 

2 
√ 

2 √ 

3 

A 

x 2 0 

R (82) 

orresponds to 0 . 01 R ∼ R 0 . 
Finally, Table 4 shows how the multiplicity λ (i.e. the total number 
f secondary particles n e = n + 

+ n − per one primary particle)
epends on the position r 0 = x 0 R 0 . As one can see, taking into account
he effects of general relativity leads to a significant (by several times)
ncrease in the production rate of secondary particles. Therefore, 
t seems necessary to include the effects of general relativity in
he consideration of the processes of the production of secondary 
articles near ‘the death line’. 
As was already mentioned abo v e, the be ginning of the cascade

an be initiated by the cosmic gamma background producing 10 5 –
0 8 primary particles per second in the polar cap region (Shukre &
adhakrishnan 1982 ). If the primary particles have 2D spatial 
istribution d N prim 

= n prim 

( r 0 , ϕ) r 0 d r 0 d ϕ, we obtain for the 2D
umber density of the secondary pairs n ±( r ⊥ 

, ϕ) 

 ± = 

√ 

3 

2 π

e 2 

� c 

∫ R 0 

r ⊥ 
r 0 d r 0 

∫ H 

0 
d h 

γe F ( ω/ω c ) 

R c ωr ⊥ 

d ω 

d r ⊥ 

n prim 

. (83) 

inally we obtain for n ±( r ⊥ 

, ϕ) 

 ± = 

3 
√ 

3 

16 π

e 2 

� c 

R 0 

R 

∫ 1 

x ⊥ 

x 2 0 d x 0 
x ⊥ 

( x 0 − x ⊥ 

) 

∫ H 

0 

d h 

R 

γe ( x 0 , h ) F ( ξ ) n prim 

. 

(84) 

In Fig. 4 , we show the 2D distribution of the ef fecti ve secondary
article multiplicity λ( x ⊥ 

) = ( n + 

+ n −)/ n prim 

(84) generated by the
rimary particles with the homogeneous distribution n prim 

= 1 for an
rdinary pulsar ( P = 1 s, B 12 = 1, χ = 30 ◦). The right shifted
istribution corresponds to the multiplicity λGR ( x 0 ) presented in 
able 4 . The fitting curves for x ⊥ 

� 1 correspond to asymptotic
ehaviour n ± ∝ x 3 ⊥ 

(see Andrianov et al., in preparation), which,
s we see, are satisfied with good accuracy. As expected, the 2D
istribution λ( x ⊥ 

) is shifted left relative to the distribution λGR ( x 0 ),
ince, as was shown in Fig. 2 , secondary particles are born closer to
he magnetic axis compared to the position of the primary particle
 x ⊥ 

< x 0 ). 
MNRAS 510, 2572–2582 (2022) 
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.2 Inflow 

et us note straight away two essential circumstances. At first, for
he formation of a particle production cascade, secondary electron–
ositron pairs corresponding to the most energetic γ -quanta must be
roduced in the region of a sufficiently strong longitudinal electric
eld E � so that one of the produced particles can stop and then be
ccelerated in the opposite direction (i.e. inwards to the star surface).
or ordinary pulsars, this occurs at distances from the star’s surface
 � R cap , where the very existence of a longitudinal electric field is
eyond doubt (Ruderman & Sutherland 1975 ; Arons 1982 ). 
Ho we ver, near ‘the death line’, the free path length l γ of γ -quanta

ropagating outwards become much larger than the size of the polar
ap. Therefore, secondary particles begin to be born at the distances
rom the star surface h 
 R cap where the longitudinal electric field,
s was previously assumed, practically vanishes. However, as was
hown, in a real dipole geometry, the longitudinal electric field
lso exists at large distances. It turns out that such an additional
ongitudinal field E 

add 
‖ (34) is sufficient to stop the particles at the

istances h ∼ R from the star surface. 
Indeed, as one can easily show by passing to a reference frame in

hich γ -quantum propagates perpendicular to the external magnetic
eld, after an almost instantaneous transition to the lower Landau

evel, the energy of the secondary particles can be written as γ ±m e c 2 ,
here γ± = θ−1 

b , i.e. 

± ∼ R c 

l γ
. (85) 

herefore, before stopping, one of the secondary particles must pass
he length 

l = 

γ±m e c 
2 

eE ‖ 
. (86) 

t gives 

δl 

R 

∼ R c 

l γ

m e c 
2 

eE ‖ R 

≈ A 

−1 R 

l γ

R 

2 c 2 

�ω B R 

4 
cap 

( 

l 

R 

) 1 / 2 

, (87) 

here A = 3/16( f / f ∗)(1 − f / f ∗) ≈ 0.1, ω B = eB 0 / m e c , and we used the
elation R c ≈ R / R cap ( f / f ∗) −1/2 . As a result, we obtain 

δl 

R 

∼ A 

−1 R 

l γ

c 

ω B R 

( 

�R 

c 

) −3 

∼ 10 −2 P 

3 B 

−1 
12 , (88) 

o that the stop length δl is, indeed, much less than the free pass
ength l γ ∼ R . Therefore, in what follows, we assume that one of the
econdary particles begins its reverse motion at the point of its birth.

Here, ho we ver, one should pay attention to the fact that the
dditional longitudinal electric field E 

add 
‖ works ef fecti vely only on

hat part of the polar cap which is located closer to the rotation axis
sin ϕ > 0 for χ < 90 ◦ and sin ϕ < 0 for χ > 90 ◦). In the other parts
f the open field lines, where the opposite inequalities are made, the
irection of the additional longitudinal electric field will be opposite
o the electric field near the star surface. In particular, for sin ϕ = 0,
here is no additional longitudinal electric field E 

add 
‖ at all. 

Finally, we note one more circumstance which significantly
istinguishes the processes of pair creation by γ -quanta moving
owards the star compared to the case of moving from the star’s
urface considered abo v e. The point is that, as shown in Fig. 1 , the
articles moving from the surface of a star are accelerated on a scale
 0 � R , so that the free path length of γ -quanta can be comparable

o the radius of the star. On the other hand, the particles moving
owards the star gain most of the energy only near the very surface.
NRAS 510, 2572–2582 (2022) 
herefore, the free path length of γ -quanta should be of the order of
 0 . 
As was shown abo v e, the energy of the particles E( h ) moving

owards the star can be written with good accuracy in the form 

( h ) = e δψ( h ) , (89) 

here, according to (30), 

ψ( h ) = 

1 

2 

�B 0 R 

2 
0 

c 
P( r m 

, ϕ m 

) f ( h ) . (90) 

ere, 

( r m 

, ϕ m 

) = 

(
cos χ + 

3 

4 

r m 

R 

sin χ cos ϕ m 

)(
1 − r 2 m 

R 

2 
0 

)
, (91) 

nd 

 ( h ) ≈ exp ( −λ1 h/R 0 ) , (92) 

here λ1 ≈ 2.5. The ability to replace the sum of the power functions
 r/R) −λ/θ0 in (17) with the exponential term exp ( − λ1 h / R 0 ) is shown
n Fig. A3 . 

Using the expression for the free pass length l γ (58) with the
nergy of the curvature γ -quanta 

 ω c = 

3 

2 
ξ

� c 

R c 

( E( h ) 

m e c 2 

)3 

(93) 

nd the correction factor ξ from (56), we can finally write down the
ondition of the pair creation o v er the star surface 

 γ ( h ) < h, (94) 

hich can be rewritten as 

 > B exp (3 λ1 x) . (95) 

ere x = h / R 0 , 

 = 

2048 

81 �ξf 
9 / 2 
∗

R 

2 

λ̄2 

c 4 

ω 

4 
B R 

4 

1 

x 2 0 

(
�R 

c 

)−15 / 2 

P 

−3 , (96) 

nd we again use standard definition (15) for the dimensionless polar
ap area f ∗. If inequality (94) is violated, then the free path length l γ
ecomes greater than the height abo v e the surface of the neutron star
 at which it was generated. In this case, γ -quantum does not have
ime to give birth to a pair before it collides with the surface. 

As a result, the condition in which secondary particles will be
roduced both for the primary particles accelerated from the stellar
urface and for the opposite motion) can be written down as 2 

 < 0 . 05 , (97) 

hich gives the following evaluation for the maximum period P max 

 max = 0 . 8 B 

8 / 15 
12 x 

4 / 15 
0 P 

2 / 5 s. (98) 

 value of 0.8 s corresponds to R = 12 km, � = 15, ξ = 3 and
 ∗ = 1.6. As one can see, a rather strong dependence of the limiting
eriod P max on the magnetic field B 12 makes it easy to explain the
bserved periods in the range of several seconds. A detailed study of
his issue, as was already noted, will be carried out in Paper II. 

 DI SCUSSI ON  

hus, in this Paper I, the first step was taken in a consistent analysis
f the conditions leading to the cessation of the secondary pair
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roduction for a sufficiently large rotation period P (which, in turn, 
eads to the termination of radio emission). As is well known, 
n reality, we have not ‘the death line’, but ‘the death valley’
n the P − Ṗ diagram, which, apparently, is related to the tail 
f the distribution on some physical parameters. What parameters 
etermine this band will be the subject of Paper II. 
As for Paper I, we started from our main assumption that near ‘the

eath line’, the polar regions are almost completely free of plasma. 
his made it possible to accurately determine the potential drop in 

he area of open field lines. In particular, it was shown that in a dipole
agnetic field in the region of open field lines, there is a longitudinal

lectric field which can stop secondary particles even at sufficiently 
arge distances h ∼ R from the surface of the star. To date, this
roperty has not been known. 
In addition, the corrections related to the effects of general 

elativity were determined. As e xpected, the y turned out to be at the
evel of 10–20 per cent, i.e. at the same level of uncertainty which
an be assumed in other quantities, such as the radius and moment of
nertia of a neutron star. Nevertheless, due to the strong dependence 
f the production rate on the energy of primary particles, taking into
ccount the effects of general relativity leads to a significant (several 
imes) increase in the multiplicity of particle production λ. Therefore, 
n this work, they were included into consideration. Looking into the 
uture, we immediately note that it can be expected that the spread
n such quantities as the radius of the star R and the size of the polar
ap R 0 (and, certainly, the curvature radius of magnetic field lines
 c ) should also lead to a noticeable expansion of ‘the death line’.
aper II will be devoted to the analysis of all these issues. 
Further, the question of the spatial distribution of the secondary 

articles produced by curvature photons was investigated in detail (as 
o synchrotron photons, we assume that near ‘the death line’, they are
ot efficient in the production of secondary pairs). First of all, it was
hown that a certain role in the production of secondary plasma can
lay γ -quanta, the energy of which is several times higher than the
nergy of the maximum of the spectrum 0.44( � c / R c ) γ 3 . This effect
ecomes especially important for the curvature γ -quanta propagating 
owards the neutron star surface. As a result, conditions (98) for
he termination of the cascade were formulated quantitatively. A 

etailed analysis of the dependence of ‘the death line’ both on the
arameters of a neutron star and on the possible existence of a non-
ipole magnetic field is to be carried out in Paper II. 
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PPENDI X  A :  APPROX IMATION  BY  BESSEL  

U N C T I O N S  

n this Appendix, we illustrate various aspects related to series 
xpansion in the Bessel functions discussed in Section 1. In Figs A1 –
2 , we show how the expansions in Bessel functions (18) and (21)

pproximate the functions 1 − x 2 and x − x 3 . The top panels show
n approximation when we restrict ourselves to only the first four
erms c i (25) and (29), for which the coefficients c 1 and c 2 coincide
ith the precisely calculated values 

 

(0) 
i = 

2 

J 2 1 ( λ
(0) 
i ) 

∫ 1 

0 
x(1 − x 2 ) J 0 ( λ

(0) 
i x)d x, (A1) 

 

(1) 
i = 

2 

J 2 2 ( λ
(1) 
i ) 

∫ 1 

0 
x ( x − x 3 ) J 1 ( λ

(1) 
i x )d x , (A2) 

nd the two remaining ones are selected to satisfy relations (18) and
21). Accordingly, the approximations by the first twenty terms of 
MNRAS 510, 2572–2582 (2022) 
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igure A1. Expansion of the function 1 − x 2 by Bessel functions J 0 ( λ
(0) 
i x)

18) using our four terms c (0) 
i (25) (top) and the first exact twenty terms

A1) (bottom). The degree of agreement of the second deri v ati ve (23) is also
hown. 

he series are shown in the bottom panels. As we see, both series
eproduce the functions 1 − x 2 and x − x 3 with high accuracy. As
or their second deri v ati ves (23) and (26), in some respects, our first
our terms approximate these functions even better than twenty exact
erms. 

Finally, in Fig. A3 , we present the comparison of the dimensionless
arallel component of the electric field E � = −( ∇ψ B )/ B /( ψ 0 / R 0 )
alculated for cylindrical and conical geometries for P = 1 s,
 12 = 1, and χ = 0 ◦. As we can see, although in the first case,

he expansion is carried out in exponential functions e −λi z , and
or dipole geometry in power-law dependencies ( r/R) −λi /θ0 , their
ifference becomes indistinguishable already for four first terms
f the series. Moreo v er, good enough agreement is achieved using
nly the first exponential term (dash line). In turn, this confirms
he possibility to write down the condition for the presence of a
ascade of secondary plasma production (i.e. the condition that
econdary particles will be produced both for primary particles
NRAS 510, 2572–2582 (2022) 
igure A2. Expansion of the function x − x 3 by Bessel functions J 1 ( λ
(1) 
i x)

21) using our four terms c (1) 
i (29) (top) and the first exact twenty terms

A2) (bottom). The degree of agreement of the second deri v ati ve (26) is also
hown. 

igure A3. Dimensionless parallel electric field E � as a function of z = h / R 0 

etermined by a power series (17) (solid line) and by one single exponential
erm (92) (dashed line). 

ccelerated from the stellar surface and for the opposite motion)
s (107). 
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