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Thermal effects on the properties of four electromagnetic waves propagating in the pulsar
magnetosphere are analysed. It is shown that thermal effects change only quantitatively
the dispersion properties of superluminal ordinary O-mode freely escaping the pulsar
magnetosphere; whereas properties of the extraordinary X-mode remain unchanged.
The research shows that for two subluminal waves propagating along magnetic field
lines thermal effects result in essential absorption. However, this attenuation occurs at
considerable distances from the neutron star, and there is no doubt of their existence.

Key words: astrophysical plasmas

1. Introduction

Unfortunately, at present the theory of pulsar radio emission is far from the mainstream
of modern astrophysics. This problem was not solved in the 1970–80s, and we have no
consistent theory up to now (Manchester & Taylor 1977; Michel 1991; Mestel 1999;
Lorimer & Kramer 2012; Lyne & Graham-Smith 2012). Moreover, the discussion for some
key points has been actually frozen. For this reason, the new generation of scientists is
not familiar with state-of-the-art research done in this field (Goldreich & Keeley 1971;
Blandford 1975; Ginzburg & Zheleznyakov 1975; Suvorov & Chugunov 1975; Blandford
& Scharlemann 1976; Benford & Buschauer 1977; Hardee & Rose 1978; Lominadze &
Mikhailovskii 1979; Lominadze, Mikhailovskii & Sagdeev 1979; Asseo, Pellat & Sol
1983; Lominadze, Machabeli & Usov 1983; Larroche & Pellat 1987; Usov 1987; Melrose
& Gedalin 1999). In recent years, research has been conducted only in the theory of wave
propagation (Barnard & Arons 1986; Blaskiewicz, Cordes & Wasserman 1991; Han et al.
1998; Lyubarskii & Petrova 1998, 2000; Petrova 2001; Dyks 2008; Andrianov & Beskin
2010; Wang, Lai & Han 2010; Beskin & Philippov 2012; Wang, Wang & Han 2014, 2015;
Yuen & Melrose 2014; Hakobyan, Beskin & Philippov 2017), but not into the mechanism
of radio emission itself.

So, to date, there have been several dozen models of pulsar radio emission of varying
degrees of elaboration (see, e.g. Volokitin, Krasnoselskh & Machabeli 1985; Beskin,
Gurevich & Istomin 1988; Ursov & Usov 1988; Asseo, Pelletier & Sol 1990; Kazbegi,
Machabeli & Melikidze 1991; Weatherall 1994; Gedalin, Gruman & Melrose 1999;
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2 A. G. Mikhaylenko, V. S. Beskin and Y. N. Istomin

Lyutikov, Blandford & Machabeli 1999; Philippov et al. 2019; Philippov, Timokhin &
Spitkovsky 2020), which relate little to each other. For this reason, we do not intend
to carry out their detailed analysis. We consider only one controversial issue, which,
apparently, finds its solution. The point is that in the theory of pulsar radio emission there
was not agreement with such a seemingly obvious question as the number of radio waves
propagating outwards from a neutron star. Most authors insisted that there are only three
modes (Barnard & Arons 1986; Lyutikov 1999; Usov 2006; Lyubarsky 2008), i.e. two
transverse and one plasma wave, whereas according to Beskin et al. (1988) and Beskin,
Gurevich & Istomin (1993) (see also Lyne & Graham-Smith 2012) there are four waves.
And the works, claiming that the number of modes is only three, appeared until very
recently (Melrose & Rafat 2017).

Actually, this was the result of misunderstanding, since Beskin et al. (1988) did not
discuss the ‘fourth mode’, but another branch of the plasma mode. Indeed, adopting
the convention in which the wave modes are defined in the plasma rest frame, we
conclude that there are only three wave modes, i.e. two transverse and one plasma mode.
But another convention is to interpret as an additional mode any positive-frequency,
forward-propagating solution in the pulsar rest frame which arises by a Lorentz
transforming of a negative frequency or backward-propagating solution in a plasma
reference frame. Below we use the second convention, which, after the work by Rafat,
Melrose & Mastrano (2019b) and especially after Melrose, Rafat & Mastrano 2020 (see
their text after (19)), should no longer raise objections.

On the other hand, Rafat et al. (2019b) posed another important problem related to this
issue. The point is that in the work by Beskin et al. (1988), it was assumed that the energy
spread of outflowing particles is small in comparison with their mean energy. The same
approximation was later used by Lyubarskii & Petrova (1998, 2000). But according to
numerous studies on the generation of a secondary electron–positron plasma in the polar
regions of a neutron star (Daugherty & Harding 1982; Gurevich & Istomin 1985; Arendt
& Eilek 2002; Medin & Lai 2010; Timokhin 2010; Timokhin & Harding 2015), in the rest
system of the plasma, the temperature is to be of the order of the rest mass of the particles.
As a result, the dispersion properties of waves propagating in the pulsar magnetosphere can
change significantly. The question of how thermal effects (i.e. the presence of a significant
spread of particles in energies comparable to the mean energy of the plasma motion) affect
the dispersion properties of radio waves in the radio pulsar magnetosphere is the main
topic of this work.

Thus, in this paper we analyse how the thermal effects can change the dispersion
properties of all the four waves propagating outwards in the pulsar magnetosphere. In
particular, we show that for superluminal O-mode the hydrodynamical approximation
remains good enough even for high temperature, T ∼ 1 MeV. As for two subluminal
modes, for them, the kinetic effects result in more effective damping. Notably, these modes
cannot escape the pulsar magnetosphere as at a large distance from the neutron star they
propagate along magnetic field lines.

We emphasize once again that we did not set ourselves the task of analysing the various
mechanisms of radio emission. Our task was to elucidate the dispersion properties of
waves whose frequencies belong to the radio range (in connection with the problem of
their propagation in the pulsar magnetosphere). Therefore the results of our research can
be used to study the propagation of waves emitted by any radiation mechanism. For this
reason, below we will only briefly discuss the effects occurring in the radiation region. We
recall that observations unambiguously confirm the presence of two orthogonal modes in
the radio emission of pulsars.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377820001579
Downloaded from https://www.cambridge.org/core. Cambridge University Press, on 25 Feb 2021 at 09:22:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377820001579
https://www.cambridge.org/core


On the radio waves propagating in the pulsar magnetosphere 3

The paper is structured as follows. Section 2 provides a detailed description of a problem
emphasizing that our main goal is to study the properties of waves generated in the
inner regions of the pulsar magnetosphere. General description of waves propagating
in superstrong magnetic fields is beyond the scope of our consideration. Section 3
describes superluminal wave connected with ordinary O-mode freely escaping from the
magnetosphere. We show that thermal effects do not drastically affect its trajectory.
Further, §§ 4 and 5 show how thermal effects result in more effective damping of two
subluminal waves propagating along magnetic field lines. Section 6 provides an example of
another energy distribution function and shows how the distribution function itself affects
the waves properties. Finally, we summarize the results of our research.

2. Description of the problem

To begin with, it is necessary to clearly formulate the task which will be discussed later
in this section, as well as the area of the considered parameters. This, as we shall see,
removes a significant number of contentious issues.

First of all, we do not consider the general dispersion properties of electromagnetic
waves but limit ourselves only to frequencies which fall in the observable radio frequency
band 100 MHz–10 GHz. This is one of the main differences from the works of Rafat,
Melrose & Mastrano (2019a) and Rafat et al. (2019b), who analysed the dispersion
properties of subluminal waves for arbitrary Lorentz factor of the wave phase velocity
γφ . The authors showed that there is a sufficiently large range of values of γφ , in which
there is a good agreement with the results of Beskin et al. (1988). As will be shown later
in this section, it is this region that corresponds to the observed radio frequencies.

Second, we consider the standard parameters of plasma in the vicinity of the neutron
star, where the generation of radio emission is supposed to occur. Assuming that the
magnetic field on the surface of a neutron star is B0 = 1012 G, we find that B = 109–1012

G for distances r up to 10 neutron star radii R. For such a large magnetic field, the
gyrofrequency ωB = eB/mec is several orders of magnitude larger than the radio frequency
ω. For this reason, in what follows we neglect all the small terms ∼ ω/ωB. In other words,
we consider the case of infinite external magnetic field B → ∞. This implies that only the
parallel component of the wave electric field can interact with particles.

Here, however, one important remark should be made. In a strong magnetic field, when
for cold plasma the dielectric permittivity tensor εij has the form (see, e.g. Suvorov &
Chugunov 1975; Hardee & Rose 1978)

εij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+ ω2
peγ ω̃2

ω2(ω2
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ω2(ω2
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,

(2.1)

where ω̃ = ω − kv and hydrodynamical velocity v ‖ B, the transition from quasi-
longitudinal to quasi-transverse approximation occurs at small enough angles θb between
the wavevector k and external magnetic field B. Moreover, for θb ≈ θcr = ωpe/ωB (see,
e.g. Zheleznyakov 1970) mode crossing takes place; therefore, additional thermal effects
should be expected for such small angles.
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However, within physical parameters under consideration, this intersection occurs at the
angles θb much smaller than the opening angle of the radiation pattern of the emitting
particles θrad ∼ 1/γ (θcr/θrad � 1, see below). In addition, such a mode crossing takes
place only under the condition n = kc/ω ≈ 1 (see, e.g. Rafat et al. 2019a,b). As will
be shown below, these conditions are not realized in the region of radiation generation.
Therefore, the approximation B → ∞ used in this paper, when for cold flow the dielectric
permittivity tensor εij reduces to

εij =

⎡
⎢⎢⎣

1, 0, 0
0, 1, 0

0, 0, 1 − ω2
pe

γ 3ω̃2

⎤
⎥⎥⎦ , (2.2)

is adequate to analyse the propagation effects for θb > θrad.
Another consequence of this approximation is that we can restrict ourselves to a

one-dimensional distribution function of particles F(u) (
∫

F(u) du = 1), where u = βγ
is the particle four-velocity, β = v‖/c, and γ = (1 − β2)−1/2 (v‖ is the velocity parallel to
the magnetic field). As will be shown below, the waves under consideration either decay
long before reaching the cyclotron resonance region, or pass through this region when
their refractive indices do not differ from unity.

Further, the plasma number density can be determined as

Ne = λNGJ ≈ 0.7 × 1012

(
P

1 s

)−1 ( B0

1012 G

)(
λ

104

)(
l

10R

)−3

cm−3. (2.3)

Here

NGJ = ΩB
2πce

, (2.4)

is the Goldreich–Julian particle number density (the minimum value which is necessary
to screen the longitudinal electric field),

λ = Ne

NGJ
∼ 104, (2.5)

is the pair production multiplicity (Daugherty & Harding 1982; Gurevich & Istomin 1985;
Arendt & Eilek 2002; Medin & Lai 2010; Timokhin 2010; Timokhin & Harding 2015),
Ω = 2π/P is the neutron star angular velocity, R is the stellar radius and l is the distance
from the star centre. It should also be noted that we consider the areas located at distances
l much smaller than the so-called light cylinder RL = c/Ω , where the magnetic field can
be considered a dipole. Finally, the θcr/θrad ratio discussed above ensuring the validity of
our approximation B → ∞, can be written in the form

θcr

θrad
≈ 2 × 10−4

(
P

1 s

)−1/2 ( B0

1012 G

)−1/2 (
λ

104

)( γs

100

)( l
10R

)3/2

. (2.6)

As we can see, at distances l ∼ 10–100R, the approximation we use is valid.
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On the radio waves propagating in the pulsar magnetosphere 5

As was shown by Beskin et al. (1988), dispersion properties of normal modes in the
pulsar magnetosphere significantly depend on the parameter

Ap = ω2
peγs

ω2

≈ 0.56 × 104

(
P

1 s

)−1 ( B0

1012 G

)(
λ

104

)( γs

100

) ( ν

1 GHz

)−2
(

l
10R

)−3

, (2.7)

where ωpe = (4πe2Ne/me)
1/2 is the plasma frequency and γs ∼ 100 is the bulk Lorentz

factor of the outflowing plasma. Here, we highlight that we do not use parameter Ap in
exact formulae; we need it only for separating two asymptotic solutions. Therefore, our
definition of this quantity is somewhat different from the definition given by Beskin et al.
(1988): Ap = ω2

peγq/ω
2, where γq = 〈1/γ 3〉−1/3 (for cold plasma, they naturally coincide).

For example, for Ap � 1 and for cold flow, the refractive index n4 obtained from
dispersion equation det(n2δij − ninj − εij) = 0 with dielectric tensor (2.2) for the ordinary
O-mode ( j = 2 in our notation for Ap > 1) in the limit θb → 0 looks like (see Beskin et al.
1988, (2.17)1; Rafat et al. 2019b, (6.17))

n4 ≈ 1 − 2
γsω

2
pe

ω2
θ 2

b . (2.8)

On the other hand, for Ap 
 1 we have n4 > 1 (see below). Indeed, for low number
density Ne (when Ap � 1), i.e. at large enough distances from a neutron star, plasma
has little effect on the properties of the transverse waves, which makes us assume with
great accuracy that the refractive indices for extraordinary (electric vector of the wave
is perpendicular to the (kB)-plane, j = 1) and ordinary (electric vector of the wave
belongs to the (kB)-plane, j = 2) modes n1,2 ≈ 1. This implies that two orthogonal modes
propagate rectilinearly in the pulsar magnetosphere.

On the other hand, the most non-trivial properties take place for Ap 
 1, i.e. according
to (2.7), just in the radio generation domain r < 30–100R. Indeed, according to Beskin
et al. (1988), the expressions for the dependence of the refractive indices on the angle θb
for all four normal waves look like

n1 = 1, (2.9)

n2 ≈ 1 + θ 2
b

4
−
(〈

ω2
pe

γ 3ω2

〉
+ θ 4

b

16

)1/2

, (2.10)

n3 ≈ 1 + θ 2
b

4
+
(〈

ω2
pe

γ 3ω2

〉
+ θ 4

b

16

)1/2

, (2.11)

n4 ≈ 1 + θ 2
b

2
. (2.12)

Here the brackets 〈· · · 〉 denote the averaging on the distribution function F(u), i.e. 〈· · · 〉 =∫ · · · F(u) du. It should be noted that expression (2.12) for the wave j = 4 is approximate;
the small additional term avoiding the singularity noted by Rafat et al. (2019b) will be
found in § 5.

1In this formula, you need to take into account that ω̃ = ω − kv‖ ≈ ω/(2γ 2).
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6 A. G. Mikhaylenko, V. S. Beskin and Y. N. Istomin

FIGURE 1. Normal modes for Ap 
 1 and ap � 1 with the refractive indices n ≈ 1 propagating
from the neutron star surface as a function of the angle θb between the wavevector k and the
external magnetic field B (Beskin et al. 1988). Waves j = 1 (extraordinary X-mode) and j = 2
(ordinary O-mode) can escape the pulsar magnetosphere. Subluminal modes j = 3, 4 decay at
large angles θb and cannot escape the pulsar magnetosphere.

As shown in figure 1, for Ap 
 1 the mode j = 2 during its propagation transforms from
a longitudinal wave for θb → 0 (where n2 < 1) to a transverse ordinary mode with n2 ≈ 1
for larger angles. We emphasize once again that everywhere below, due to small distances
from the neutron star l � RL in the analysis of dispersion relations, the angles θb , etc. will
be assumed to be small.

Figure 1 shows that the mixing of longitudinal and transverse waves takes place at
θb ∼ θ∗, where

θ∗ =
〈

ω2
pe

γ 3ω2

〉1/4

. (2.13)

If for small angles θb < θ∗, we deal with two transverse modes n1 ≈ n4 ≈ 1 and with
two branches of plasma wave n2,3 ≈ 1 ± a1/2

p , then at large angles θb > θ∗ we have
two transverse modes with n1 ≈ n2 ≈ 1 and two Alfvén modes with n3 ≈ n4 ≈ 1/ cos θb
propagating along magnetic field lines. As was already noted, these waves are to decay. It
should be noted that for cold outflow where 〈1/γ 3〉 ≈ γ −3

s we have

Ap ≈ (θ∗γs)
4. (2.14)

This evaluation is very useful. In particular, rewriting condition θ∗γs 
 1 in the form
θ∗ 
 γ −1

s , we come to another important conclusion that in the domain where Ap 
 1
radiation is generated at the angles θb � θ∗.

As we see, another key parameter of our problem is

ap =
〈

ω2
pe

γ 3ω2

〉

≈ 0.56 × 10−4

(
P

1 s

)−1 ( B0

1012 G

)(
λ

104

)( γs

100

)−3 ( ν

1 GHz

)−2
(

l
10R

)−3

. (2.15)

In particular, the mode j = 2 cannot propagate outward for ap > 1, i.e. for small enough
frequencies ω. But for ap � 1 (and, as was already stressed, only for Ap 
 1 in the
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radiation point), it is this wave that escapes the pulsar magnetosphere and is observed
as an ordinary O-mode (see figure 1). For this reason, we consider its properties in detail
in § 3.

Once again, we emphasize that the above expressions (2.9)–(2.12) for the refractive
indices, n1,2,3,4 were obtained under definite restrictions. In addition to condition Ap 
 1,
it was also assumed that the thermal spread over longitudinal momentum p = mecu is
sufficiently small, so that the averaging over the distribution function F(u) does not cover
resonant condition ω − k‖v‖ = 0, i.e.

1 − nβ cos θb = 0. (2.16)

This last circumstance was, in fact, a stumbling block. Indeed, the exact dispersion
equation for an infinite magnetic field, but now for arbitrary energy distribution F(u),
looks like (Beskin et al. 1988; Rafat et al. 2019b)

(1 − n2)

(
1 − n2 + (1 − n2 cos2 θb)

ω2
pe

ω2n cos θb

∫
1

(1 − nβ cos θb)

dF
du

du

)
= 0. (2.17)

On the other hand, expressions (2.9)–(2.12) for the refractive indices correspond to the
cold plasma approximation, when we can take velocity v out of the integration sign. But
in reality, the distribution function of secondary particles F(u) is wide enough (Daugherty
& Harding 1982; Gurevich & Istomin 1985; Arendt & Eilek 2002; Medin & Lai 2010;
Timokhin 2010; Timokhin & Harding 2015). Therefore, correction for the superluminal
mode j = 2 and, all the more, a possibility of the damping for subluminal modes j = 3, 4
requires a separate detailed consideration (Rafat et al. 2019a,b). However, we recall that the
damping of subluminal modes itself, which at large angles propagate along the magnetic
field and, therefore, cannot leave a neutron star magnetosphere, has never been questioned
(Beskin et al. 1988).

Obviously, for a quantitative study of thermal effects we must specify the distribution
function F(u). As was shown by Arendt & Eilek (2002), the distribution of secondary
particles in the plasma rest frame with good accuracy can be approximated by the Jüttner
distribution

F′(u′) = exp(−ργ ′)
2K1(ρ)

, (2.18)

with parameter ρ = mec2/T ≈ 1. Here K1 is the Macdonald function of order one. This
implies relativistic temperature T ≈ mec2. Accordingly, in the laboratory (neutron star)
reference frame we have

F(u) = exp[−ργsγ (1 − ββs)]
2K1(ρ)

γs(1 − ββs). (2.19)

Note that, in contrast to Rafat et al. (2019b), we consider normalization
∫

F(u) du = 1.
However, below we consider a wider class of distribution functions F(u), since the
distribution function (2.19) does not always adequately describe the distribution of
secondary particles outflowing from the magnetosphere of a neutron star.

Thus, the goal of our study is to clarify how the thermal effects affect the propagation
properties of radio waves in the pulsar magnetosphere. Therefore, in contrast to the works
of Rafat et al. (2019a) and Rafat et al. (2019b), our main task is to analyse the dependence
of their refractive indices n on the angle θb. It is clear that in the infinite magnetic field
approximation (2.17) considered here, the extraordinary X-mode j = 1 remains unchanged.
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8 A. G. Mikhaylenko, V. S. Beskin and Y. N. Istomin

Indeed, as the electric vector of this wave is perpendicular to the external magnetic field,
this mode cannot interact with plasma particles. As a result, we have n1 = 1, i.e. this mode
propagates rectilinearly in the pulsar magnetosphere. For this reason, we discuss only three
other modes.

3. Superluminal O-mode

At first, let us consider the O-mode j = 2; remember that here we consider the case
Ap 
 1. As shown in figure 1, for this wave n2 < 1, i.e. it is a superluminal mode. Using
the standard Lorentz transformation to the plasma rest frame

n′ cos θ ′
b = n cos θb − βs

1 − nβs cos θb
, (3.1)

we obtain for γs 
 1, Ap 
 1, and θb = 0,

n′
2 ≈ −1 + 1

(1 − n2)γ 2
s

≈ −1 + A−1/2
p . (3.2)

As ω′ = γsω(1 − n2β) > 0, one can conclude that for θb = 0 in the plasma rest frame the
O-mode j = 2 corresponds to superluminal branch of a plasma wave propagating to the
star surface.

On the other hand, as for the superluminal O-mode, the denominator in (2.17) is positive
for all particle four-velocities u, one can obtain using integrating by parts,

1 − n2
2 − (1 − n2

2 cos2 θb)
ω2

pe

ω2

〈
1

γ 3(1 − n2β cos θb)2

〉
= 0. (3.3)

For cold plasma (and for |n − 1| 
 |β − 1|, which is just true for Ap 
 1) one can put
β = 1, and we return to (2.10). On the other hand, for a wide enough distribution function,
i.e. for parameter ρ ∼ 1 incoming into the Jüttner distribution function (2.18), the value
of β under the integral sign cannot be considered constant, and therefore a more detailed
study is required.

Figure 2 shows how the refractive index n2 depends on the angle θb for Ap 
 1
for different parameters ρ (solid lines). The dashed lines correspond to the simplified
expression (2.10) used by Beskin et al. (1988), where during the integration on du in (2.17)
the condition β = 1 was assumed.

As we see, for ρ ∼ 1 the difference in the refractive index from unity is already three to
four times larger than that for cold plasma. It should be also emphasized that even for hot
enough plasma (i.e. for ρ ∼ 1) the simplified evaluation (2.10) reproduces a good enough
dependence of the refractive index n2 on angle θb. Note that in this figure, the angle θb is
expressed in terms of θ∗, which is different for different frequencies ω.

Remember that it is the wave j = 2 that escapes from the pulsar magnetosphere as
the ordinary O-mode (Barnard & Arons 1986; Beskin & Philippov 2012). In this case,
the difference in the refractive index from unity leads to a deviation of the wave from the
magnetic axis. As a result, the mean profile formed by the O-mode turns out to be wider
than for the extraordinary X-mode j = 1.

To obtain the width of the directivity pattern Wr, we must now determine the
propagation path of the O-mode. As was shown by Beskin et al. (1988), for small angles
θ⊥ = k⊥/k � 1 and α = (3/2)r⊥/l � 1 where α is the angle between the magnetic field
and the magnetic axis, and r⊥ and k⊥ are the components of the vectors perpendicular
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On the radio waves propagating in the pulsar magnetosphere 9

FIGURE 2. Dependence of refractive index n2 on the angle θb for different parameters ρ =
mec2/T for γs = 100, λ = 104, P = 1 s, B = 1011 G and ν = 1 GHz (Ap ∼ 106). The solid
lines correspond to numerical solution of (3.3) and the dashed lines correspond to analytical
expression (2.10) for different parameters ρ.

to the magnetic axis, in dipole magnetic field the equations of geometric optics dr/dt =
∂ω/∂k, dk/dt = −∂ω/∂r are reduced to the following system:

dr⊥
dl

= θ⊥
n

− 1
n2

∂n
∂θb

, (3.4)

dθ⊥
dl

= 3
2

1
n2l

∂n
∂θb

. (3.5)

Here l is the distance from the star centre, and we use relations θb = α − θ⊥ and dl/dt = c.
Differentiating now the second bracket in the dispersion equation (2.17) with respect to

θb, we obtain for the derivative ∂n2/∂θb,

∂n2

∂θb
= θb

A
1 + A

, (3.6)

where

A = 4
ω2

pe

ω2

〈
u(2u2ξ − 1)

(2u2ξ + 1)3

〉
(3.7)

and ξ = 1 − n2 − θ 2
b /2 is to be the root of the dispersion equation

ξ − θ 2
b

2
= 4

ω2
pe

ω2

〈
uξ

(2u2ξ + 1)2

〉
. (3.8)

As was already mentioned, we present all the expressions in the limit of θb � 1 and
|n − 1| � 1.

In the limit u2ξ 
 1 we reduce to ‘hydrodynamical’ relations

dr⊥
dl

= θ⊥ + (α − θ⊥)

2

[
1 − (α − θ⊥)2

[16ap(l) + (α − θ⊥)4]1/2

]
, (3.9)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377820001579
Downloaded from https://www.cambridge.org/core. Cambridge University Press, on 25 Feb 2021 at 09:22:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377820001579
https://www.cambridge.org/core


10 A. G. Mikhaylenko, V. S. Beskin and Y. N. Istomin

FIGURE 3. Dependence of the width of the directivity pattern Wr (3.11) (in degrees) on
parameter ρ = mec2/T for γs = 100, λ = 104, P = 1 s, magnetic field on the star surface
B0 = 1012 G and for starting point l = 3R. The dashed line corresponds to rectilinear
propagation.

dθ⊥
dl

= 3
4

(α − θ⊥)

l

[
1 − (α − θ⊥)2

[16ap(l) + (α − θ⊥)4]1/2

]
, (3.10)

obtained by Beskin et al. (1988). Here ap is given by relation (2.15) and n2 is to be found
as a solution of (3.3). Note that during integration it is necessary to take into account
the dependence of ap = 〈ω2

pe/(γ
3ω2)〉 via ωpe on l (figure 2 shows the dependence of the

refractive index n2 on the angle θb at a given point, not along the beam propagation). As a
result, integrating the system of (3.4) and (3.5), we obtain for the width of the directivity
pattern

Wr = 2θ⊥(∞). (3.11)

The dependence of the width of the directivity pattern Wr (3.11) on parameter ρ is
shown in figure 3 for the same parameters as in figure 2; we start at the point l = 3R, where
θ⊥ = α (radiation along the magnetic field line). The dashed line corresponds to rectilinear
propagation when Wr = 2 α(3R). As we see, thermal effects do not significantly affect the
width of the directivity pattern.

A detailed study of the effects of the refraction of an ordinary wave on the formation
of mean profiles of radio pulsars will be carried out in a separate work. At the same time,
it should be emphasized that the starting radius l = 3R used in this work was selected
taking into account the observational data. Indeed, according to the statistical analysis
performed by Rankin (1990) and Maciesiak, Gil & Melikidze (2012), the intrinsic pulse
width Wr for the core component (just corresponding to X-mode in our classification)
is equal to Wr = W0/P1/2, where W0 = 2◦–3◦. Assuming that this value corresponds to
the opening magnetic field lines 3(Ωl/c)1/2 at the distance l, we obtain for the height of
the radio emission l ∼ 3 stellar radius. As for the cases when the observed pulse width
turns out to be larger than these values (see, for example, Mitra 2017), this, as is well
known, can be associated either with non-orthogonality (when the observable pulse width
Wobs = Wr/ sin χ ) or with the fact that the average profile is determined by the O-mode
j = 2. We can note that under the condition ρ 
 1, the dependence of the window width
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Wr on the frequency ν shown in figure 2 with good accuracy satisfies the dependence

Wr ≈ 8◦
( ν

1 GHz

)−0.14
(

P
1 s

)−0.43 ( B0

1012 G

)0.07 ( γs

100

)−0.11
(
λ

104

)0.07 ( l
3R

)0.15

,

(3.12)
predicted by Beskin et al. (1988) for an O-mode for P = 1 s, λ = 104 and l = 3R. For more
realistic temperatures ρ ∼ 1, the pulse width is to be even larger.

In conclusion, we note that, according to relation (2.7), for frequencies ν = ω/2π ∼ 1
GHz in the region of radio emission generation l < 100R (Ap > 1), the refractive index
n2 (2.10) differs significantly from unity. On the other hand, as was shown by Rafat et al.
(2019a), mode crossing occurs only if the refractive index n is close to unity (in the plasma
rest frame |n2 − 1| ∼ ω2

pe/ω
2
B). Hence, such an intersection of modes is possible only in

an insignificant range of heights l ∼ 100R (Ap ∼ 1), when in the hydrodynamic limit one
should use the more accurate expression

n2 ≈ 1 + 1
2γ 2

s

−
(

ω2
pe

γ 3
s ω2

)1/2

, (3.13)

giving the possibility of fulfilling the condition n2 ≈ 1. On the other hand, at the distances
l ∼ 10R such crossing takes place for frequencies ν > 100 GHz only.

Thus, for frequencies ν ∼ 1 GHz the mode crossing cannot take place for the O-mode
in the generation region. As far as the heights l ∼ 100R, the O-mode passes this region
at much higher angles θb 
 θcr. Therefore, for the O-mode j = 2 emitted in the region
l � 100R the influence of thermal effects in the region of mode crossing can be neglected.

4. Subluminal plasma-Alfvén mode

Now, let us consider mixing plasma-Alfvén mode j = 3 (n3 > 1, see figure 1); again, we
consider the case Ap 
 1. For this mode for θb = 0 we have

n′
3 ≈ −1 + 1

(1 − n3)γ 2
s

≈ −1 − A−1/2
p (4.1)

and ω′ = γsω(1 − n2β) < 0. Thus, for θb = 0 in the plasma rest frame this mode
corresponds to the subluminal branch of a plasma wave also propagating to the star’s
surface. On the other hand, for large enough angles θb in the laboratory frame, (2.11)
gives n3 ≈ 1 + θ 2

b /2 ≈ 1/ cos θb. This dispersion equation corresponds to an Alfvén mode
propagating along the magnetic field line.

It is clear that the main difference between the subluminal ( j = 3) and the superluminal
( j = 2) wave is that it becomes possible to perform the Cherenkov resonance condition
(2.16). In this case, since we consider the problem of wave propagation in a curved external
magnetic field when the angle θb changes along the propagation path, the resonance
condition is to be fulfilled even for cold plasma. That is why in figure 1 it is the angle
θb that is chosen as the main parameter.

However, for cold plasma, the resonance condition (2.16) occurs for the angles θb larger
than the angle θ∗. This result can be obtained immediately if we write down the resonance
condition in the form (n − 1) − 1/2γ 2 − θ 2

b /2 = 0. For n3 > 1 + (ω2
pe/γ

3ω2)1/2 and for
Ap 
 1 we just obtain θres > θ∗. Therefore, we can conclude that for cold plasma, the
damping of the plasma-Alfvén mode occurs only for large enough angles θb (as shown in
figure 1).
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12 A. G. Mikhaylenko, V. S. Beskin and Y. N. Istomin

On the other hand, for a fairly wide distribution function F(u), i.e. for ρ > 1, there
are particles which are in resonance with the wave even for θb = 0. For ultrarelativistic
plasma (γs 
 1) and for small angles θb � θ∗, the resonance condition can be written in
the form γres ≈ 1/θ∗. As a result, using relation (2.14), we obtain for the exponent a(γres) =
ργsγres(1 − βsβres) in the Jüttner distribution F(u) ∝ exp(−a) for resonance particles:

a(γres) ≈ ργsθ
∗ ∼ ρA1/4

p . (4.2)

Thus, for Ap 
 1 the damping of the plasma-Alfvén mode for θb = 0 is to be weak even
for ρ ∼ 1.

To determine the attenuation of the wave j = 3 for an arbitrary temperature, it is
convenient to find the solution of the dispersion equation (2.17) in the form

n3 cos θb = 1 + x3. (4.3)

Then for small angles θb � 1, relativistic energies (β ≈ 1 − 1/(2u2)) and for x3 � 1, we
obtain

x3

(
x3 + θ 2

b

2

)
= I3(x3), (4.4)

where

I3(x3) = ω2
pe

ω2(1 + x3)

[
−
∫

2u2x2
3

(2u2x3 − 1)

dF
du

du + iπ
x1/2

3

2
√

2

dF
du

∣∣∣∣∣
u=(2x3)−1/2

]
. (4.5)

Here, as usual, for small imaginary part Im n in comparison with its real part, the real part
of the integral −

∫
is to be taken in the sense of the principal value.

Besides, for small angles θb � θ∗, when according to (2.11) n3 ≈ 1 + a1/2
p , our

definition (4.3) gives x3 ≈ a1/2
p . This evaluation can be easily obtained from condition

x3 ≈ I1/2
3 resulting from (4.4), if we neglect the second term in (4.5) and use the limit

x3u2 
 1. The last relation results from evaluation x3u2 ∼ a1/2
p γ 2

s ∼ A1/2
p . In particular,

this implies that the resonant particles correspond to the low-energy part of the distribution
function (γres � γs). As a result, expanding the denominator in (4.5) by a small parameter
1/(2u2x3), we obtain that I3 = J3, where

J3(x3) = ω2
pe

ω2(1 + x3)
−
∫

x3

(
1 + 1

2u2x3

)
dF
du

du ≈
〈

ω2
pe

γ 3ω2

〉
, (4.6)

as the first integration term vanishes due to the identity
∫
(dF/du) du = 0.

Here it is interesting to check the accuracy of the approximation under consideration.
For this, in figure 4 we show a comparison of the ratios of the values x3 obtained from
relations (4.4) and (4.6) and from exact dispersion equation (2.17) for θb = 0, λ = 104 and
ν = 1 GHz. As we see, a good enough agreement does exist for different starting points l.

We also note that there are no contradictions with the results presented by Rafat et al.
(2019b), since the range of parameters we are considering (precisely due to condition Ap >
1) corresponds to the values 0 < log10γ

′
φ < 2 (for γs = 100) where, according to their

figure 11, the results actually match each other. Wherein, the accuracy of the approximation
becomes worse as Ap → 1 (γ ′

φ → γs).
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FIGURE 4. Comparison of the ratio of values x(exact)
3 /x(appr)

3 obtained from relations (4.4) and
(4.6) and from exact dispersion equation (2.17) for different starting points.

Further, one can see that the leading (real) term in I3 actually does not depend on x.
Therefore, for weak damping, the imaginary part of n3 ≈ 1 + x3 + θ 2

b /2 is completely
determined by the second term,

Im n3 = π

2
√

2

ω2
pe

ω2

[(16J3 + θ 4
b )1/2 − θ 2

b ]1/2

(16J3 + θ 4
b )1/2

dF
du

∣∣∣∣∣
u=(2x3)−1/2

, (4.7)

since the resonance condition is achieved in the low-energy region, where dF/du > 0.
Nevertheless, Im n3 > 0, which corresponds to the attenuation of the wave j = 3. This is
due to the fact that the wave frequency is negative in the plasma rest reference frame (see
appendix A for more detail).

Figure 5 shows the levels l = rd at which the optical depth, for the mode j = 3,

τ = ω

c

∫ l=rd

l=r0

Im n3 dl, (4.8)

becomes equal to unity. Integration was carried out using general relations (3.4)–(3.5)
resulting in (Beskin et al. 1988)

dr⊥
dl

= θ⊥ + (α − θ⊥)

2

[
1 + (α − θ⊥)2

[16ap(l) + (α − θ⊥)4]1/2

]
, (4.9)

dθ⊥
dl

= 3
4

(α − θ⊥)

l

[
1 + (α − θ⊥)2

[16ap(l) + (α − θ⊥)4]1/2

]
. (4.10)

As in all the previous figures, we set the radiation radius to r0 = 3R. The solid lines
correspond to the ratio θb/θ

∗ < 1 at the level τ = 1, and the dashed-dotted lines
correspond to the ratio θb/θ

∗ > 1.
As we can see, even for ρ = 1 the wave damps at the heights significantly higher than

the radiation level. Therefore, there is no doubt in the very existence of this wave. On the
other hand, for ρ ∼ 1 the damping occurs at the angles θb even smaller than local θ∗(l),
so that the inclusion of thermal effects into consideration leads to the fact that this wave
attenuates at much smaller distances from a neutron star in comparison with the case of
cold plasma.
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14 A. G. Mikhaylenko, V. S. Beskin and Y. N. Istomin

FIGURE 5. Levels l = rd at which the optical depth τ (4.8) for mode j = 3 becomes equal to
one for the same parameters as in figure 3. The solid lines correspond to the ratio θb/θ

∗ < 1 at
the level τ = 1 and the dashed-dotted lines correspond to the ratio θb/θ

∗ > 1.

5. Subluminal Alfvén mode

Finally, let us consider the Alfvén mode j = 4. For θb = 0 it corresponds to the
transverse ordinary O-mode (n4 = 1), but for large enough θb (and again for Ap 
 1) we
obtain n4 ≈ 1/ cos θb, i.e. this mode also propagates along the magnetic field line. Unlike
the mode j = 3, for the mode j = 4 the resonance condition cannot be satisfied for θb = 0.
However, it becomes possible for θb > 0, the resonant particles having the energies much
larger than the average energy of outflowing plasma (γres 
 γs).

Due to (2.12), for this mode it is also convenient to find the solution of the dispersion
equation (2.17) in the form

n4 cos θb = 1 + x4. (5.1)

Then for small angles θb � 1 and relativistic energies (β ≈ 1 − 1/(2u2)), we obtain

x4 = θ 2
b /2

I4(x4) − 1
, (5.2)

where

I4(x4) = −ω2
pe

ω2

[
−
∫

2u2

1 − 2u2x4

dF
du

du − iπ
x−3/2

4

2
√

2

dF
du

∣∣∣∣∣
u=(2x4)−1/2

]
. (5.3)

Here, in contrast to (4.5), for the Alfvén mode j = 4 we have x4u2 � 1. Indeed, neglecting
2u2x4 in the denominator and the second term in (5.3), we obtain for small angles θb

x4 = θ 2
b /2

J4 − 1
, (5.4)

where

J4 = 4
ω2

pe〈u〉
ω2

≈ 4Ap. (5.5)

As a result, we obtain x4u2 ∼ γ 2
s θ 2

b /Ap, so that up to the angles θb ∼ θ∗ we have x4u2 <

A−1/2
p due to (2.14).
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FIGURE 6. Comparison of the ratio of values x(exact)
4 /x(appr)

4 obtained from relations
(5.4)–(5.5) and from exact dispersion equation (2.17) for different starting points.

Figure 6 shows a comparison of the ratios of the values x4 obtained from relations (5.4)
and from exact dispersion equation (2.17) for θb = 0.02, λ = 104 and ν = 1 GHz. As we
see, a good agreement exists for different starting points l for Alfvén wave j = 4 as well. In
particular, such a good agreement also shows that the corresponding root of the dispersion
equation is far enough from the value n = 1/ cos θb. Thus, the contradiction with the paper
by Rafat et al. (2019b) is removed, where it was pointed out that the approach under
consideration is not applicable for n ≈ 1/ cos θb.

Further, as I4(0) ≈ 4Ap, we can conclude that for Ap 
 1 the disturbance x4 to
expression n4 (2.12) is indeed small, with resonant particles being absent for θb = 0.
Certainly, as previously mentioned, this expression can only be used if the second term
in brackets in (5.3) is much smaller than the first term. As was already highlighted, this
implies that for this mode the resonant particles correspond to the high-energy part of the
distribution function.

Finally, we see that the leading (real) term in J4 again does not depend on our variable
x4. Therefore, for weak damping, the imaginary part of n4 ≈ 1 + x4 + θ 2

b /2 is completely
determined by the second term

Im n4 = −π

8
J1/2

4

〈u〉θb

dF
du

∣∣∣∣∣
u=(2x4)−1/2

. (5.6)

Here we neglect the terms of the order of A−1/2
p . Since now the resonance condition

is achieved in the high-energy region, where dF/du < 0, we again have Im n4 > 0
corresponding to attenuation of the wave j = 4.

Note that, in reality, the relation (5.2) has no singularity. Indeed, expanding I4 as

I4(x4) = −ω2
pe

ω2
−
∫

2u2(1 + 2u2x4)
dF
du

du ≈ 4
ω2

pe〈u〉
ω2

+ 16
ω2

pe〈u3〉
ω2

x4 + · · · (5.7)

and assuming that ω2
pe〈u3〉/ω2 ≈ J4γ

2
s we obtain

x4 ≈ −(J4 − 1) ± [(J4 − 1)2 + 8 J4γ
2
s θ 2

b ]1/2

8 J4γ 2
s

, (5.8)
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16 A. G. Mikhaylenko, V. S. Beskin and Y. N. Istomin

FIGURE 7. Same as in figure 5 for the Alfvén mode j = 4.

where the ‘plus’ sign corresponds to J4 > 1, and the ‘minus’ sign to J4 < 1. As a
result, n4(θb) always remains larger than unity if J4 > 1 and vice versa. Thus, during the
propagation the wave j = 4 never achieves the singularity x4 = 0 (i.e. n4 cos θb = 0), noted
by Rafat et al. (2019b). On the other hand, for Ap � 1 (I4 � 1) expression (5.2) results in

n4 ≈ 1 − 2
ω2

pe〈u〉
ω2

θ 2
b , (5.9)

which is in agreement with Beskin et al. (1988) and Rafat et al. (2019b).
Figure 7 shows the levels l = rd at which the optical depth τ becomes equal to unity for

the mode j = 4. Integration was carried out using general relations (3.4)–(3.5) resulting in

dr⊥
dl

= α, (5.10)

dθ⊥
dl

= 3
2

θb

l
. (5.11)

As previously mentioned, we set the radiation radius to r0 = 3R. The solid lines
correspond to the ratio θb/θ

∗ < 1 at the level τ = 1 and the dashed-dotted lines correspond
to the ratio θb/θ

∗ > 1. As we see, thermal effects for the Alfvén wave j = 4, in general,
are the same as for the wave j = 3. Again, even for ρ = 1 the wave damps at the heights
significantly higher than the radiation level. On the other hand, for ρ ∼ 1 the damping can
occur at angles θb even smaller than local transition angle θ∗(l). The characteristic values
for concentration Ne turn out to be four orders of magnitude lower than those for ordinary
pulsars. As can be seen from relations (2.7) and (2.15), the values of Ap and ap should be
smaller in the same proportion.

6. Alternative distribution function

As was already stated, the Jüttner distribution function (2.19) may not accurately
describe the real distribution function of particles flowing along open magnetic field lines
in the pulsar magnetosphere. Here we rely on the results obtained under the analysis of
processes of secondary electron–positron plasma generation in the polar magnetosphere
of radio pulsars obtained by Gurevich & Istomin (1985). For this reason, we consider
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FIGURE 8. Particle distribution function F(u) (6.1) in the laboratory frame, u0 = 100, Δ = 10.
The dashed curve represents the Jüttner function with ρ = 4 in the frame moving with the
Lorentz factor γs = 210.

another particle distribution function in the laboratory frame (see figures 8 and 9):

F(u) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, u < u0 − Δ,

u − u0 + Δ

Δ(u0 + Δ/2)
, u0 − Δ < u < u0,

u2
0

(u0 + Δ/2)
u−2, u > u0.

(6.1)

Accordingly, the derivative of the distribution function over u is

dF(u)

du
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, u < u0 − Δ,

1
Δ(u0 + Δ/2)

, u0 − Δ < u < u0,

− 2u2
0

(u0 + Δ/2)
u−3, u > u0.

(6.2)

In addition, we will discuss in more detail the dispersion properties of the waves
propagating in the pulsar magnetosphere, and we will not limit ourselves to small angles
θb � 1.

First, let us make some remarks regarding the choice of an alternative distribution
function F(u) (6.1). It is clear that the particle distribution function in the magnetosphere
in the laboratory frame is a streaming function, i.e. there are no particles with negative
momentum u. In addition, the cascade production of electrons and positrons from high
to low energies ends even at rather high momenta, u � 102. Therefore, the particle
distribution function is zero for u < u0.

However, in order to exclude the possible influence of the infinite derivative dF/du
in the region u � u0, we made the transition from F = 0 to F ∝ u−2 for u > u0
smooth, introducing the transition region u0 − Δ < u < u0, where the derivative is finite.
Bearing in mind that the distribution function is continuous at u = u0 and the condition∫

F(u) du = 1, we obtain the representation of F(u) in the form (6.1).
It should be noted that this distribution function in the rest system, where 〈v〉 =∫
F′(u′)u′[1 + (u′)2]−1/2du′ = 0, is not symmetric with respect to u = 0 (see figure 9).
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FIGURE 9. Particle distribution function F(u′) (6.1) in the rest frame, where the mean velocity
is equal to zero. The Lorentz factor of motion of this frame is γs = 210. The dashed line shows
the Jüttner function (2.18) with ρ = 4.

And although the maximum values of this function and the Jüttner function (2.18) with
the parameter ρ = 4 match each other, and therefore the widths of the functions coincide,
the general form of the functions is quite different. A particular difference is that the
derivative dF′(u′)/du′ is negative for u′ < 0. For the Jüttner distribution function this is
not so. Negative values of the derivative dF′(u′)/du′(u′ < 0) could lead to instability in the
rest system, although, as we will see below, the distribution function (6.1) is stable in the
laboratory coordinate system and leads to damping of the ‘Alfvén’ waves. This suggests
that we deal with convective stability/instability, which depends on the frame (Landau &
Lifshits 1981).

Further, remember that the power-law dependence of the distribution function F(u)
(6.1) on the momentum u in the form F(u) ∝ u−2 for u > u0 follows from numerical
calculations of cascade generation of electron–positron plasma in the polar region of the
pulsar magnetosphere first performed by Daugherty & Harding (1982) and subsequently
confirmed by Gurevich & Istomin (1985). The characteristic value of u is u0 � 102, and
Δ � u0. The value of Δ defines the region of arising of the distribution function from
zero to its maximum value at u = u0. Finally, it is necessary to stress that the Lorentz boost
transformation to the plasma rest frame (〈v〉 = 0) corresponds to γs ≈ 2u0 (see figure 9).

Since in the laboratory reference frame u 
 1, we can put β = 1 − 1/(2u2). As a result,
dispersion equation (2.17) can be rewritten as

1 − n2 + 1 + n cos θb

n cos θb

ω2
pe

ω2

∫ [
1 + n cos θb

2u2(1 − n cos θb)

]−1 dF
du

du = 0. (6.3)

If

|n cos θb − 1| >
n cos θb

2(u0 − Δ)2
, (6.4)

(which is possible for Ap 
 1), the denominator in the integrand does not turn to zero
(there is no resonance), and we can go from integration over the derivative of the
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distribution function to integration over the distribution function itself,

∫ [
1 + n cos θb

2u2(1 − n cos θb)

]−1 dF
du

du = −
〈

n cos θb

u3(1 − n cos θb)

[
1 + n cos θb

2u2(1 − n cos θb)

]−2
〉

.

(6.5)

Neglecting now the small term in brackets in the second equality of the (6.5), which is
proportional to u−2, we obtain for the dispersion equation

1 − n2 − 1 + n cos θb

1 − n cos θb
a′

p = 0, (6.6)

where now a′
p = 〈ω2

pe/(u
3ω2)〉 ≈ ap. For the distribution function F(u) (6.1), we obtain for

Δ � u0

a′
p = 1

4

ω2
pe

u3
0ω

2
. (6.7)

Thus, for u 
 1 dispersion equation (6.3) is reduced to a cubic equation

n3 − 1
cos θb

n2 − (1 + a′
p)n + 1 − a′

p

cos θb
= 0, (6.8)

describing three electromagnetic modes propagating in the magnetosphere. Solving the
cubic equation, we have

n2 = −(1 − √
3 i)

6
XZ−1/3 − (1 + √

3 i)
6

Z1/3 + 1
3 cos θb

, (6.9)

n3 = 1
3
(XZ−1/3 + Z1/3) + 1

3 cos θb
, (6.10)

n5 = −(1 + √
3 i)

6
XZ−1/3 − (1 − √

3 i)
6

Z1/3 + 1
3 cos θb

, (6.11)

where

X = 3(1 + a′
p) + cos−2 θb, (6.12)

Y = cos−3 θb + 9(2a′
p − 1) cos−1 θb, (6.13)

Z = (Y2 − X3)1/2 + Y. (6.14)

Two roots, n2 and n3, which were already obtained above, correspond to waves which
propagate in the positive direction (n > 0), and one extra mode j = 5, which propagates
in the negative direction (n < 0).

For small values of the angle θb and the parameter a′
p (θb � 1, a′

p � 1), dispersion
equation (6.8) can be solved by substituting n = 1 + δn, where δn � 1. The solution is
δn = θ 2

b /4 ± (θ 4
b /16 + a′

p)
1/2, which just corresponds to the modes j = 2, 3 (2.10) and

(2.11). However, we skip the third root of (6.8), which corresponds to the substitution
n = −1 + δn, where δn = a′

pθ
2
b /8. This is the mode j = 5. Previously, this mode was

not taken into account, since only the waves propagating along the plasma flow were
considered. It is clear that the waves propagating inwards, n < 0, must have a refractive
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FIGURE 10. Refractive indices n for modes j = 2, 3, 5. The parameter a′
p = 〈ω2

pe/(u
3ω2)〉. The

dashed line corresponds to n = 1/ cos θb.

index different from that of the waves propagating outwards. The wave j = 5 can be excited
by a reverse current flowing in the polar region of the pulsar magnetosphere.

The dependencies of n2, n3 and n5 on the angle θb are presented in figure 10. As was
already shown, for θb = 0 (cos θb = 1) we have n2,3 = 1 ± (a′

p)
1/2. But for θb = π/2,

(cos θb = 0) we obtain n2 = (1 − a′
p)

1/2 and n3 → 1/ cos θ , the superluminal mode j =
2 transforming into a purely transverse wave. As for the wave j = 5, which was not
mentioned earlier, it is a wave propagating in the negative direction in the laboratory
reference frame, and is purely transverse: n5 = −1 at θb = 0 and n5 = −(1 − a′

p)
1/2 at

θb = π/2. This mode occurs as a result of Lorentz transformation of the frequency and
wavevector of a wave propagating in a positive direction in a rest frame into a laboratory
frame.

Returning now to the question of wave attenuation, we note that for Δ � u0 the
attenuation of the plasma-Alfvén wave j = 3, as for cold plasma, begins only at angles
θb > θ∗. As for the attenuation of the Alfvén mode j = 4 (n cos θ � 1), for this mode the
second term in brackets in (6.3) cannot be neglected. As a result, the integral becomes
equal to ∫ [

1 + n cos θb

2u2(1 − n cos θb)

]−1 dF
du

du =
∫

u2

u2 − u2
r − i0

dF
du

du. (6.15)

Here the quantity ur is the resonant momentum

u2
r = n cos θb

2(n cos θb − 1)
, (6.16)

and we added a small imaginary part in the denominator to take into account the Landau
bypass rule for the pole (ω → ω + i0), i.e. for the refractive index n → n − i0. Thus, the
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dispersion equation takes the form

1 − n2 + ω2
pe

ω2

1 + n cos θb

n cos θb

[
−
∫

u2

u2 − u2
r

dF
du

du + i
πur

2
dF
du

∣∣∣∣
u=ur

]
= 0. (6.17)

Substituting now the derivative dF/du from (6.2) and, again, introducing the notation

x = n cos θb − 1, (6.18)

we obtain

tan2 θb + 2x
cos2 θb

− 4ω2
peu0

ω2

[
log

(
1 − 1

2xu2
0

)
− iπ

]
x = 0. (6.19)

It should be borne in mind that the value x in the argument of the logarithm is a complex
quantity. Therefore, the logarithm is complex also, and it does not contain a module in its
argument.

As a result, one can see that for not very small angles θb > u−2
0 � 10−4 and the condition

u2
0 a′

p 
 1 we obtain

x = i
tan2 θb

4π

ω2

u0ω2
pe

. (6.20)

Thus, the imaginary part of the refractive index of the Alfvén mode is

Im(n4 cos θb) = tan2 θb

4π

ω2

u0ω2
pe

� tan2 θb

2π
A−1

p , (6.21)

which corresponds to the attenuation of the wave during its propagation in the
magnetosphere.

Figure 11 shows how the levels l = rd at which the optical depth τ = 1 (4.8) depend on
parameter γs for both Jüttner (ρ = 4, γs) and power-law (u0 = γs/2) distribution functions.
As we see, these levels do not differ so drastically. This is due to the fact that in both cases
the attenuation is determined by resonant particles whose energy is not much higher than
the average particle energy.

Thus, in general, the properties of four normal waves depend weakly on the particle
distribution function. On the other hand, we considered it necessary to stress here that
in a magnetized, relativistic streaming plasma of the radio pulsar magnetosphere in the
laboratory frame, i.e. in the frame associated with a neutron star, there are six modes
depending on the polarization of the wave and the direction of their propagation. For
Ap 
 1 they are two transverse electromagnetic modes with the wave electric field
polarization directed orthogonal to magnetic field with the refractive index (n1 = ±1),
two electromagnetic waves with polarization directed in the plane of the magnetic
field and the wavevector (Alfvén wave with refractive index n4, and the fifth mode with
n5 < 0) and two plasma waves with longitudinal polarization (along the magnetic field) at
θb = 0 and turning into transverse wave at θb = 90◦ for n2 and to Alfvén wave for n3.

It should be also noted that for a symmetric distribution function F(u) with respect to the
zero momentum, u = 0, F(u) = F(−u), in the plasma rest frame, the dispersion equation
(2.17) can be presented in the form

1 − n2 + 2
(1 − n2 cos2 θb))ω

2
p

ω2

∫ ∞

0

βdF/du
1 − n2β2 cos2 θb

du = 0, (6.22)

from which one can see that it has two roots of n2, which means that there are, as it
were, two modes of oscillations. Adding the mode n2

1 = 1, the total number of modes
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FIGURE 11. Comparison of levels l = rd at which the optical depth τ = 1 (4.8) depending on
parameter γs for both Jüttner (ρ = 4, γs) and power-law (u0 = γs/2) distribution functions for
the Alfvén mode j = 4.

is three. However, this is not so because n = ±(n2)1/2, and the number of modes is six.
The degeneracy is removed for the streaming distribution function, F(u) �= F(−u). Thus,
the consideration of eigenmodes in the laboratory coordinate frame gives the same picture
as the consideration in the rest frame.

7. Conclusion

It was shown that thermal kinetic effects do not affect so drastically the dispersion
relations for all four waves propagating outwards in the pulsar magnetosphere. In
particular, for the superluminal O-mode j = 2 the ‘hydrodynamical’ relation (2.10) yields
a good enough expression for refractive index n2. We intend to conduct a detailed analysis
of thermal effects on the observed average profiles of radio pulsars in a separate paper.

As for the two subluminal modes j = 3 and j = 4, for them the kinetic effects result
in more effective damping already at the angles θb ∼ θ∗. In particular, it was shown that
the attenuation of a plasma-Alfvén wave j = 3 substantially depends on the low-energy
part of the spectrum of the outflowing particles: in the absence of a low-energy tail (see
§ 6), the attenuation occurs at the same distances from the star as for cold plasma. On the
other hand, the presence of a high-energy power-law tail does not alter significantly the
attenuation of the Alfvén wave j = 4 in comparison with the cold outflow. Remember that
this is not so important because these modes cannot escape the pulsar magnetosphere as
at a large distance from a neutron star they propagate along magnetic field lines.

As was already mentioned, a detailed analysis of astrophysical applications is beyond
the scope of this paper. Nevertheless, it is worth discussing qualitatively the dependence of
the above mentioned effects on the main parameters. Wherein, below we, again, consider
only the regions which are close enough to the star surface (i.e. for which Ap 
 1).

First of all, we note that the plasma effects considered above become most pronounced
at low frequencies. As was already stressed, the ordinary O-mode j = 2 cannot propagate
outward for ap > 1, i.e. for small enough frequencies ω. According to (2.15), it takes place
for l < lcr, where

lcr ∼ 0.4R
(

P
1 s

)−1/3 ( B0

1012 G

)1/3 (
λ

104

)1/3 ( γs

100

)−1 ( ν

1 GHz

)−2/3
. (7.1)
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For example, for low-frequency array (known as LOFAR) frequencies ν ≈ 30 MHz we
obtain lcr ≈ 20R for P = 0.5 s, B0 = 2 × 1012 G and γs = 50. For this reason, Beskin
et al. (1988) proposed this property to explain the low-frequency cut-off of the pulsar
radio emission. On the other hand, it is clear that being emitted from larger distances, an
ordinary wave j = 2 can freely escape the pulsar magnetosphere.

Next, let us briefly discuss the dependence on the Lorentz factor γs. If, according to
Arendt & Eilek (2002), the averaged Lorentz factor is close to 103, then, according to
(2.7) and (2.15), the value Ap becomes an order of magnitude greater, and, which is
more important, the value ap becomes three orders of magnitude smaller. As a result,
the approximation under consideration turns out to be valid up to larger distances from
the surface of the star, although the refraction effects themselves become much less
pronounced.

On the other hand, if, in reality, γs ≈ 10 (this may be due to the presence of a non-dipole
magnetic field near the surface of the star, see, e.g. Arons (1993) for more detail), the
situation can radically change. Indeed, as can be seen from relation (7.1), in this case,
the ordinary O-mode can propagate from the star surface only starting from the heights
more than 20R, and at lower frequencies of the order of 100 MHz – only starting from the
heights more than 100R, which can lead to a direct contradiction with the observational
data.

Further, one can see that the effect of multiplicity is not so significant as, according to
(7.1), the dependence of the critical radius lcr on λ does not turn out to be so sharp. On
the other hand, for millisecond pulsars, it is parameter λ that can bring about a significant
effect on the propagation effects. Indeed, for millisecond pulsars (P ∼ 2–10 ms, B0 ∼
108–109 G), the very value of the Goldreich–Julian number density NGJ (2.4) does not
change very noticeably. On the other hand, according to Timokhin & Harding (2015), the
multiplicity λ is

λ ≈ 5.4 × 104

(
Rc

107 cm

)−3/7 ( P
1 s

)−1/7 ( B0

1012 G

)−6/7

, (7.2)

where Rc is the curvature radius of the magnetic field lines, should be suppressed by
several orders of magnitude. As a result, we obtain for the number density Ne (2.3)
using standard evaluation of the curvature radius Rc = (4/3)R/R0 for dipole magnetic
field (R0 = R(ΩR/c)1/2 is the polar cap radius):

Ne ≈ 0.2 × 108

(
P

1 ms

)−19/14 ( B0

108 G

)−13/7 ( l
10R

)−3

. (7.3)

As we see, the value of Ne (7.3) for millisecond pulsars is four orders of magnitude
smaller than that of ordinary pulsars, see (2.3). Thus, according to (7.1), for millisecond
pulsars, the region Ap 
 1 considered above exists only for not very high heights l < 10R.
Wherein, according to (7.1), the ordinary mode always propagates outside from the star
surface. If the radiation is generated at larger distances from a neutron star, the refractive
index (5.9) should be used for the O-mode.

In conclusion, let us comment on the three statements which were already mentioned
above. First, it is necessary to stress that we confirmed that at zero angle θb in the laboratory
(pulsar) reference frame, there are two branches of the same plasma wave propagating
from a neutron star. But in the plasma rest frame both modes propagate inwards to the
star surface, one of them ( j = 2) being superluminal and the other ( j = 3) subluminal.
Second, it should be noted that our results do not contradict the conclusions obtained by
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Rafat et al. (2019b). Indeed, as was shown in this paper, in the region of phase velocities
corresponding to γφ < 100 (i.e. precisely in the region Ap > 1), the results for the plasma
modes j = 2, 3 are actually identical. In our opinion, the question on the number of waves
can be considered closed. Finally, remember that in the theory of radio emission proposed
by Beskin et al. (1988), the key role is played by the instability of the Alfvén mode j = 4
in the angle range θb < θ∗, which is connected with the curvature of magnetic field lines.
As was shown above, the inclusion of thermal effects into consideration does not lead to
strong attenuation of the Alfvén mode in this region. Thus, thermal effects do not violate
significantly this key point of the theory.
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Appendix A. Damping of the plasma-Alfvén wave j = 3

In this appendix, we check whether our conclusion on the damping of the plasma-Alfvén
wave j = 3 is correct in spite of the fact that the derivative dF/du is positive for resonance
particles. For simplicity, we consider the waves propagating along the homogeneous
magnetic field (in the direction of the x-axis).

First, remember that in our statement of the problem, in the laboratory (pulsar) reference
frame only the wavevector k of the wave j = 3 has the imaginary part, the wave amplitude
being constant at the radiating point x = 0 (l = lrad). In this system the wave amplitude E
can be written as

E = E0 e−iωt+i(Re k)x−(Im k)x. (A 1)

To show that the imaginary part Im k is really positive, let us consider a subluminal
plasma wave propagating in the plasma rest frame along the magnetic field towards
negative values x′ (towards the star). In this frame, the coordinate of the radiating point
x = 0 corresponds to x′ = −βsct′. As was shown at the beginning of § 4, it is this wave
that corresponds to the plasma-Alfvén wave j = 3 in the pulsar reference frame.

On the other hand, it is clear that in a plasma rest system this wave will decay as it
propagates toward negative x′. Passing now in (A 1) to the variables (t′, x′) using the
Lorentz transformation, we obtain, taking into account the invariance of the quantity
kx − ωt,

E = E0 e−iω′t′+i(Re k′)x′−(Im k)(x′+cβst′). (A 2)

As expected, the wave amplitude remains constant at the radiating point x′ = −cβst′.
Further, since in the laboratory (pulsar) reference frame this wave propagates outwards

from a neutron star, in the plasma rest frame its velocity should be less than the relative
velocity of the reference systems (|β| < βs). As a result, on the wave trajectory x′ = −cβt′,
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the amplitude (A 2) has the form

E = E0 e−iω′t′+i(Re k′)x′−(Im k)(βs−β)ct′). (A 3)

Since this wave must attenuate with increasing t′, we conclude that Im k > 0, which
corresponds to damping of the plasma-Alfvén wave in the pulsar reference frame.
Thus, here we are also dealing with convective stability/instability, which depends on the
reference frame (Landau & Lifshits 1981).
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