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ABSTRACT
To clarify the mechanism of energy losses in the pulsar magnetosphere the angular
distribution of the electromagnetic (Poynting) energy flux at small distances from
the star surface is explored. Analyzing the results of recent numerical simulation we
found that almost all the energy flux is concentrated within narrow open magnetic
field line region. We show that for large enough inclination angle between magnetic
and rotation axis such angular distribution of the energy losses can be related to the
separatrix currents which circulate in the pulsar magnetosphere but do not outflow
into pulsar wind.

Key words: stars: neutron – pulsars: general.

1 INTRODUCTION

Starting with fundamental paper by Pacini (1967) it be-
came clear that electromagnetic stresses play the main role
in evolution of radio pulsars. It is not surprising that vac-
uum magneto-dipole radiation was considered for a long
time as a main mechanism of the pulsar braking (Ostriker
& Gunn 1969; Manchester & Taylor 1977). But later it be-
came clear that the magnetosphere is to be filled with dense
plasma that efficiently screens the longitudinal electric field;
E‖ = 0 (Sturrock 1971; Mestel 1973). Moreover, it was
shown that for zero longitudinal electric currents circulating
in the pulsar magnetosphere the energy losses Wtot vanish
for any inclination angle χ between the angular velocity Ω
and magnetic moment m (Beskin et al. 1983). This effect
was confirmed later by Mestel et al. (1999) to be a result
of full screening of the magneto-dipole radiation by mag-
netospheric plasma. This implies that the pulsar braking
results fully from impact of the Ampère torque K, which is
a consequence of longitudinal currents flowing in the pulsar
magnetosphere.

Nevertheless, magneto-dipole losses are still often men-
tioned in connection with the mechanism of energy re-
lease of radio pulsars. Indeed, MHD numerical simula-
tions of the magnetosphere of inclined rotator obtained
first by Spitkovsky (2006) and later confirmed in many
papers (Kalapotharakos & Contopoulos 2009; Pétri 2012;
Kalapotharakos et al. 2012; Tchekhovskoy et al. 2013;
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Philippov et al. 2014; Tchekhovskoy et al. 2016) demon-
strate the following dependence of total energy losses on the
inclination angle χ

WMHD
tot ≈ 1

4

B2
0Ω4R6

c3
(k1 + k2 sin2 χ), (1)

where k1 = 1.0 ± 0.1 and k2 = 1.1 ± 0.1. As we see,
this expression has the term with the same dependence on
the angle χ as for magneto-dipole losses, indicating that
magneto-dipole contribution could still exist. Unfortunately,
recent numerical simulations (Kalapotharakos et al. 2012;
Tchekhovskoy et al. 2016) have not clarified this question.

Remember that well-known analytical solution for so-
called ”inclined split-monopole” (Bogovalov 1999)

Br = BL
R2

L

r2
Sign(Ψ), (2)

Bϕ = Eθ = −BL
ΩR2

L

cr
sin θ Sign(Ψ), (3)

where

Ψ = cos θ cosχ− sin θ sinχ cos (ϕ− Ωt+ Ωr/c) , (4)

does not contain magneto-dipole wave since the electromag-
netic fields outside of the current sheet located at the surface
Ψ = 0 do not depend on time. For this reason it was not sur-
prising that according to this model the energy losses do not
depend on the inclination angle χ. However, as was shown
by Kalapotharakos et al. (2012); Tchekhovskoy et al. (2016),
MHD numerical simulation for large enough inclination an-
gles χ > 30◦ demonstrates a noticeable time-dependent
component in the pulsar wind.
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In particular, for orthogonal rotator (when the cur-
rent sheet is actually absent) the solution has the follow-
ing asymptotic behaviour at large distances r � RL, where
RL = c/Ω is the light cylinder radius (Tchekhovskoy et al.
2016; Beskin 2018)

Br ≈ B0
R2

r2
sin θ cos Φ(r, ϕ, t), (5)

Bϕ = Eθ ≈ −B0
ΩR2

cr
sin2 θ cos Φ(r, ϕ, t), (6)

where

Φ(r, ϕ, t) = ϕ− Ωt+ Ωr/c. (7)

As we see, this asymptotic solution has the same wave factor
Φ(r, ϕ, t) as for point orthogonal magnetic dipole rotating in
vacuum (Landau & Lifshitz 1971)

B⊥r =
|m|
r3

sin θRe

(
2− 2i

Ωr

c

)
exp [iΦ(r, ϕ, t)], (8)

B⊥θ =
|m|
r3

cos θRe

(
−1 + i

Ωr

c
+

Ω2r2

c2

)
exp
¯

[iΦ(r, ϕ, t)],

(9)

B⊥ϕ =
|m|
r3

Re

(
−i− Ωr

c
+ i

Ω2r2

c2

)
exp [iΦ(r, ϕ, t)]. (10)

This implies that displacement current does play important
role in the pulsar wind zone.

Thus, the question arises about the nature of the elec-
tromagnetic torque acting on the neutron star. To clarify
this point in this paper we analyze the angular distribu-
tion of the energy flux inside the light cylinder r < RL.
We show that electromagnetic energy flux corresponding to
MHD solution (1) does not contain a magneto-dipole wave.
Inside the light cylinder all the energy flux outflows through
the open flux tube region, and not quasi-isotropically, as it
should have been the case for magneto-dipole radiation. Pos-
sible explanations of the nature of such an angular energy
flux distribution are also discussed.

2 CURRENT LOSSES

2.1 Braking torque

To clarify how the braking of a radio pulsar occurs, let us re-
member the braking mechanism of a uniformly magnetized
highly conducting rotating spherical ball. We note first of
all that the rotating ball can be affected only by electro-
magnetic stress. The general expression for electromagnetic
force dF looks like

dF = ρeE dV +
[j×B]

c
dV + σeE ds+

[JS ×B]

c
ds, (11)

where the first two terms correspond to the volume contri-
bution and the second two to the surface ones. Accordingly,
the energy losses can be written down as

Wtot = −ΩK, (12)

where

K =

∮
r× dF (13)

is the electromagnetic torque.

However, if only the corotation currents j = ρe[Ω× r]
are assumed to flow in the bulk1, then the volume part of
the force dF (11) vanishes due to freezing-in condition

Ein + [
[Ω× r]

c
×Bin] = 0. (14)

Moreover, electric surface term σeE plays no role as well.
Indeed, rewriting relations (12)–(13) as

Ω · [r× dF] = σeE · [Ω× r]ds, (15)

we see that due freezing-in condition (14) this scalar product
vanishes. As a result, the general expression for the braking
torque acting on a rotating magnetized sphere is

K =

∮
[r× [Js ×B]

c
] ds. (16)

Thus, one can conclude that all the energy losses are indeed
determined by the surface current Js.

In what follows it will be more convenient to express
the torque K through the magnetic field B only. As

Js =
c

4π
[B× n], (17)

we obtain (Landau & Lifshitz 1971)

K =
R

4π

∮
[n×B] (B · n) ds. (18)

Here the first bracket corresponds to the surface current Js,
and the second one to the magnetic field in Ampère force
F = [Js ×B]/c. Together with (12) it finally gives

Wtot = −ΩR3

4π

∮
BnBϕ sin θ ds. (19)

Clearly, this expression for the energy losses can be obtained
directly from the electromagnetic flux

Wtot =
c

4π

∮
[E×B]ds (20)

with E from (14). Accordingly, for spherical body this torque
can be obtained also from the electromagnetic stress Tkl:
Ki = −

∮
εijkrjTkldsl.

It is important that expression (18) is correct not only
for a neutron star surrounded by a magnetosphere filled with
plasma (where the condition (14) holds) but also for a sphere
rotating in vacuum. Indeed, assuming that the coordinate ϕ
and time t entering all expressions only in the combination
ϕ − Ωt, the solution of Maxwell equation corresponding to
Faraday law is well known to admit the form (see, e.g. Beskin
2010)

E + [
[Ω× r]

c
×B] = −∇ψ. (21)

On the other hand, according to freezing-in condition (14)
one can conclude that ψ = const inside the sphere. Hence,
at r = R + 0, the additional term ∇ψ is normal to the
sphere surface. For this reason the contribution of ∇ψ to
the electromagnetic energy flux (20) vanishes.

1 Otherwise, in a rotating reference frame there would be an elec-

tric current in the absence of an electric field.
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2.2 Magnetized sphere rotating in vacuum

To clarify some details of the braking mechanism respon-
sible for MHD spin-down energy losses, let us consider at
first uniformly magnetized sphere rotating in vacuum. Sur-
prisingly, but even in this long-settled question there is one
nontrivial point. Indeed, the total energy losses

Wtot =
2

3

m2Ω4

c3
sin2 χ (22)

depend only on the magnetic moment of the pulsar m. How-
ever, the appropriate surface currents depend strongly on
the fine structure of the magnetic field on the surface of the
star.

To show this, we note that according to (12) and (22)
the braking torque K (18) must be proportional to the third
power of the angular velocity Ω. In other words, it must
correspond to the third power of the expansion with respect
to the small parameter

ε =
ΩR

c
. (23)

Further, one can show that the first order term B(1) turns
out to be zero (see, e.g., Beskin & Zheltoukhov 2014 for more
detail). In particular, it can be directly checked expanding
the expressions (8)–(10) in terms of the small parameter ε.
As a result, the general expression for the energy losses can
be written as

Wtot = −ΩR3

4π

∮ (
B(0)
n B(3)

ϕ +B(3)
n B(0)

ϕ

)
sin θ do, (24)

where the indices (0) and (3) correspond to the expansion
powers in parameter ε.

Recall now that classical Deutsch (1955) solution was
constructed under the assumption that the normal compo-
nent of the magnetic field exactly coincides with the field of
the magnetic dipole. In particular, for orthogonal case the
leading terms at the star surfce r = R look like (Michel &
Li 1999)

Bn = 2
|m|
R3

sin θ cosϕ, (25)

Bϕ =
|m|
R3

[
sinϕ+

1

2
ε2(cos 2θ − 2) sinϕ+ ε3 cosϕ

]
. (26)

In other words, by construction B
(3)
n = 0, so that the only

contribution to the expression (24) for the braking torque is
given by the first term.

On the other hand, expanding expressions (8)–(10) on
the small value ε

Bn =
|m|
R3

[
2 sin θ cosϕ+ ε2 sin θ cosϕ− 2

3
ε3 sin θ sinϕ

]
,

(27)

Bϕ =
|m|
R3

[
sinϕ− 1

2
ε2 sinϕ− 2

3
ε3 cosϕ

]
, (28)

we find that only 2/3 of the losses are still determined by the
first term in (24), while 1/3 with the second one. Certainly,
the total energy losses and the direction of the evolution of
the inclination angle χ do not depend on the choice of the
solution.

This discrepancy can be easily explained. ’Point dipole’

solution differs from the Deutsch solution by adding an addi-
tional magnetic dipole δm/|m| = (ε3/3)ey, which generates
homogeneous magnetic field inside the star

B(3) = −2

3

|m|
R3

(
ΩR

c

)3

ey′ , (29)

where ey′ is the unit vector perpendicular to Ω and m. It is
clear that appropriate electromagnetic losses are much less
than even the electric quadrupole losses associated with the
inevitable redistribution of charges inside the sphere. How-
ever, the structure of the surface currents changes radically.

Note that braking torque (18) does not depend on
whether the zeroth-ordering currents are concentrated on
the surface of the star or at its center. This is due to the fact
that, similar to the additional magnetic field (29), the brak-
ing torque K does not depend on the radius of the sphere R
for a fixed magnetic dipole m.

2.3 Direct action of longitudinal magnetospheric
current

Returning now to the problem of pulsar braking, remem-
ber that for zero longitudinal electric currents circulating in
the pulsar magnetosphere the energy losses Wtot vanish for
any inclination angle χ due to full screening of the magneto-
dipole radiation by magnetospheric plasma (Beskin et al.
1983; Mestel et al. 1999). This implies that the pulsar brak-
ing results fully from impact of the Ampère torque K, which
is a consequence of longitudinal currents flowing in the mag-
netosphere.

An example considering in the previous subsection helps
us to understand the mechanism of such screening. It re-
sults from the disturbance of the third order components of
the magnetic field B(3) on the star surface. Clearly, it was
impossible to determine all these components analytically.
For this reason up to now only direct action of longitudinal
magnetospheric current was included into consideration. In
other words, only the first term in the expansion (24) (zero

order B
(0)
n , third order B

(3)
ϕ due to surface current which

close longitudinal magnetospehric currents) was analyzed.
To determine the direct action of longitudinal magne-

tospheric currents j‖ it is necessary to connect them by con-
tinuity equation

∇2Js = j‖ (30)

with the surface current Js. It is convenient to introduce
dimensionless current i = j‖/jGJ, where jGJ is a ‘local’
Goldreich-Julian current density,

jGJ = −ΩB cos θb
2π

, (31)

and θb is the angle between Ω and B. For dipole magnetic
field near magnetic pole (and for ε� 1)

θb ≈ χ−
3

2

rm cosϕm
R

, (32)

where (rm, ϕm) are the polar coordinates on the star surface
relative to magnetic pole.

It is also convenient to split dimensionless current i into
symmetric and anti-symmetric contributions, is and ia, de-
pending upon whether the direction of the current is the
same in the northern and southern parts of the polar cap,
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or opposite. Using now the definition (32), we obtain for
dipole magnetic field (and for ε� 1)

j‖,s(rm, ϕm) = −is(rm, ϕm)
ΩB

2π
cosχ, (33)

j‖,a(rm, ϕm) = −3

2
ia(rm, ϕm)

ΩB

2π

rm cosϕm
R

sinχ.(34)

For is = ia = 1 we return to j‖ = ρGJc.
On the other hand, as was shown by Beskin et al. (1993),

surface current Js can be present as

Js = ∇ξ. (35)

In this case, the continuity equation (30) looks like

∂2ξ

∂x2m
+

1

xm

∂ξ

∂xm
+

1

x2m

∂2ξ

∂ϕ2
m

=

ΩBR2

2π

(
is cosχ+

3

2
ia xm cosϕm sinχ

)
, (36)

where xm = rm/R � 1. As to boundary condition, it can
be found under the assumption that beyond the polar cap
there are no surface currents associated with the volume
longitudinal current flowing in the magnetosphere (Beskin
& Nokhrina 2004). In other words, this boundary condition
can be formulated as the vanishing of the tangential surface
current at the polar cap boundary

ξ [x0(ϕm), ϕm] = const, (37)

where the function x0(ϕm) prescribes the form of the polar
cap. If we do not make this assumption, the problem of
deceleration of the neutron star becomes uncertain since it
is not possible to determine the magnitude of the additional
surface current circulating outside the polar cap.

Continuity equation (36) together with boundary con-
dition (37) allows us to determine surface current Js = ∇ξ
and, hence, braking torque Kvol (16) and approppiate en-
ergy losses Wvol = −ΩK

Wvol = −ΩK‖ cosχ− ΩK⊥ sinχ. (38)

Here we expand the torque K into two components parallel
and perpendicular to the magnetic dipole moment m

K = K‖ em +K⊥ n1, (39)

where the unit vector n1 locates in the plain Ωm.
As a result, we obtain (see Appendix A for more detail)

Kvol,‖ = −c‖
B2

0Ω3R6

c3
cosχ, (40)

Kvol,⊥ = −c⊥
B2

0Ω3R6

c3

(
ΩR

c

)
sinχ. (41)

Here B0 = 2|m|/R3 is the magnetic field at the magnetic
pole, and the coefficients c‖ ∼ is and c⊥ ∼ ia depend on cur-
rent distribution functions is(rm, ϕm) and ia(rm, ϕm). Ac-
cordingly, energy losses resulting from volume longitudinal
currents can be present as

Wvol =
B2

0Ω4R6

c3

[
c‖ cos2 χ+ c⊥

(
ΩR

c

)
sin2 χ

]
. (42)

Clearly, the coefficients c‖ and c⊥ depend also on the
shape of the polar cap. But both analytical (Beskin et al.
1993) and numerical (Bai & Spitkovsky 2010; Gralla et al.
2017) results demonstrate that the disturbances of the polar

Figure 1. Polar cap shape for χ = 60◦ obtained analytically for
the magnetosphere with zero longitudinal current j‖ = 0 (Beskin

et al. 1993, left) and using the results of numerical simulations

produced by Tchekhovskoy et al. (2016) (right).

cap boundary do not exceed 20% (see Fig. 1). Here to find
the shape of the open magnetic line region deep inside the
light cylinder from the results of numerical simulation we
determine the domain with nonzero longitudinal currents
j‖ (nonzero scalar function Λ, see Appendix A2 for more
detail).

Finally, as was also stressed in Appendix A, the re-
sults of numerical simulations show that approximation
is = const, ia = const is good enough to describe longitudi-
nal currents flowing in the pulsar magnetosphere. It turned
out that if the symmetric current is close to Goldreich-Julian
one, the magnitude of the anti-symmetric current signifi-
cantly exceeds it

is ≈ 1, (43)

ia ≈ ε−1/2. (44)

Thus, the assumptions about circular polar cap and constant
dimensionless currents is and is are reasonable enough to
restrict ourselves this model only.

As a result, for ia = const and for circular polar cap the
solution of continuity equation (36)

ξ(xm, ϕm) =
3ia
32π

ΩB0R
2xm(x2m − x20) sinϕm (45)

gives (Beskin et al. 1993)

c⊥ =
f3
∗

64
ia. (46)

Certainly, were we took into account that the pulsar has two
magnetic poles. Accordingly, for is = const we have

c‖ =
f2
∗

4
is. (47)

Here f∗ is a dimensionless polar cap area:

scap = f∗πR
2

(
ΩR

c

)
. (48)

As was shown by Beskin et al. (1983) and confirmed recently
by Tchekhovskoy et al. (2016) (see also Gralla et al. 2017),

f∗(χ) ≈ f∗(0) (1 + 0.2 sin2 χ), (49)

so that f∗(χ) increases from f∗ ≈ 1.3–1.5 for χ = 0◦ to
f∗ ≈ 1.7–1.9 for χ = 90◦.

To summarize, we see that according to (42), (44) and
(46), direct action of longitudinal electric currents for or-
thogonal rotator Wvol ∼ ε1/2WMHD

tot is too small to ex-
plain total energy losses Wtot. To satisfy MHD energy losses
WMHD

tot (1) for χ = 90◦ the anti-symmetric current ia should
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be large enough: ia ≈ ε−1. Thus, volume currents are too
small to explain MHD energy losses, and we need to look
for another possible contribution to the pulsar braking.

2.4 Additional torque: separatrix currents

At first, remember that, as was shown in Sect. 2.2, in ad-
dition to direct current losses mentioned above, the braking
torque can be connected with the perturbation of the nor-
mal component of the magnetic field Bn. In this case, it is
necessary to take into account the perturbation of the mag-
netic field over the entire surface of the neutron star, not
only within polar cap. Such additional contribution could
be related to the violation of the exact mutual compensa-
tion between the magneto-dipole radiation of the central star
and the radiation of the magnetosphere itself taking place
for zero longitudinal current.

On the other hand, there is another possible contribu-
tion to the pulsar braking. To discuss it let us return to en-
ergy losses due to surface current Js closing magnetospheric
longitudinal currents. Using the definition (16), it is conve-
nient to rewrite now the total energy losses in the form

Wtot = 2
Ω

c

∫
r⊥JθBnds. (50)

Remember that analyzing expression (50) into the forehead,
one can arrive at the erroneous conclusion that for local
GJ current (is = ia = 1), the braking torque should not
strongly depend on the inclination angle χ. Indeed, as the
angle χ increases, the surface current Js decrease as cosχ.
But the characteristic distance from the axis to the polar
cap r⊥, on the contrary, increases as sinχ.

However, as an accurate analysis shows (see again Ap-
pendix A1), this, at first glance, obvious reasoning does not
take into account the real structure of the surface currents
within polar cap region (Beskin et al. 1993). As shown in
Figure 2, surface current should in fact be arranged in such
a way that the current < Jθ > averaged over the polar cap
surface (it is this component, as one can see from (50), deter-
mines the energy losses of the neutron star) would be zero.
Therefore, in order to determine the energy losses, it was
necessary to take into account effects of a higher order in
the parameter ε = ΩR/c.

By the way, if the averaged surface current < Jθ > is
indeed zero, then, as shown in Figure 2, the surface cur-
rent, which flows along the separatrix at the boundary of
the closed magnetosphere, should be comparable to the to-
tal current flowing within the open field region region. For
example, for a circular polar cap and local GJ current the re-
turn current is 75% of the volume current (see Appendix B1
and Beskin 2010 for more detail):

Isep
Ivol

=
3

4
. (51)

Here, however, one very important remark should be
made. As was already stressed, the above conclusion that
< Jθ >= 0 was based on the assumption that there are no
longitudinal currents in the closed magnetosphere (Beskin
& Nokhrina 2004). The same concerns the separatrix cur-
rents that do not propagate in the pulsar wind. If we do not
make these assumptions, the problem of deceleration of the
neutron star becomes uncertain, since it is not possible to

Figure 2. The structure of the volume (contour arrows), separa-
trix (fat arrows) and surface (thin arrows) currents near the polar

cap of the orthogonal rotator. The additional separatrix current

is shown by a dashed curve. Surface current Js = ∇ξ corresponds
to solution ξ(xm, ϕm) (45).

calculate the magnitude of the additional current circulating
in the magnetosphere, but not outgoing into the pulsar wind
region. Indeed, as shown in Figure 2, additional separatrix
currents must inevitably lead to a nonzero average surface
current < Jθ > 6= 0 on the polar cap, and, consequently, to
additional energy losses.

Thus, it was not possible to achieve definitive clarity
in the analytical analysis here. Some clarification became
possible only after the results of numerical modeling for the
magnetosphere of the inclined rotator were obtained. As a
result, it was shown that volume currents in the closed mag-
netosphere are really absent. A remarkable event was also
the fact that return currents along the separatrix were also
confirmed (Bai & Spitkovsky 2010). However, the return cur-
rent was found to be only 20% of the volume current. This
discrepancy could be explained by the fact that in the calcu-
lations carried out, the star radius R was only two to three
times smaller the light cylinder radius RL = c/Ω. However,
a significant difference in these quantities could also be as-
sociated with additional separatrix currents that were not
taken into account in the previous analysis.

3 RESULTS

Returning now to the discussion of the energy losses of a
neutron star, we recall that current losses connected with
torque Kvol,⊥ (41) correspond to the first term in the ex-
pansion (24). They are caused by surface currents that close
the volume currents flowing in the magnetosphere. There-
fore, the action of such a braking torque is concentrated
only in the area of the polar cap. The magnetic field here
corresponds to the magnetic field of the zeroth approxima-
tion. In this case, as we have seen, volume current losses can
not explain the energy release of WMHD

tot (1) for the MHD
solution.

On the other hand, as was shown above, there are two
more possible causes of the deceleration of radio pulsars.
First, the example of vacuum losses shows that in general
case the second term in the expansion (24) can be important.
In this case, in the expression Js × B, the surface current

MNRAS 000, 1–?? (2017)
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60 70 80 90 100 110 120 r
0.0

0.2

0.4

0.6

0.8

1.0

S/S0

(1)
(2)
(3)

Figure 3. Electromagnetic energy flux from the region of closed
(lower curve) and open (middle curve) magnetic field lines. The

upper curve corresponds to the total energy losses. The radius of

the neutron star (50 cells) is 10 times smaller than the radius of
the light cylinder.

Js corresponds to the zero-order current, and the magnetic
field is related to the third-order perturbation induced by
the rotation. Another possible cause may be associated with
additional separatrix currents closing within the polar cap
when energy losses still correspond to the first term in the
expansion (24). Up to now these currents could not be pre-
dicted analytically, but we can use the results of numerical
simulations to distinguish them.

Indeed, there is clear difference between two possibili-
ties mentioned above. Energy losses connected with the sec-
ond term in the expansion (24) are to be homogeneously
distributed over the star surface. Consequently, in this case
it can be expected that appropriate energy flux within the
light cylinder is also distributed rather uniformly. On the
other hand, energy losses connected with additional sepa-
ratrix current are to be concentrated within the polar cap,
i.e., appropriate energy flux is to be concentrated within
open magnetic field line region. Thus, one can distinguish
these two possibilities by analyzing the angular distribution
of energy losses deep inside the light cylinder.

In Figure 3 we show the dependence of the electromag-
netic energy flux S (determined from numerical results ob-
tained by Tchekhovskoy et al. 2016) on the radius r for
the inclination angle 60◦ through the region of closed (lower
curve) and open (middle curve) field lines. As was already
stressed, to find the area of the open magnetic field lines in-
side the light cylinder we determine numerically the region
with nonzero longitudinal currents j‖. The upper curve cor-
responds to the total energy losses. The flux S0 corresponds
to energy losses WMHD

tot (1). The size of the star is 50 cells,
and the light cylinder is 500 cells (ε = 0.1).

As we see, practically all the energy flux is concentrated
within open magnetic field region. There is no energy flux
from the closed region which should have occurred if the
second term in (24) was important. Hence, one can sup-
pose that the most part of energy losses of the inclined
rotator are associated with additional separatrix currents.
We can also conclude that the above result does not leave
any room for magneto-dipole losses. Remember that accord-
ing to (25)–(26) and (27)–(28) the energy flux of vacuum
magneto-dipole radiation near the star surface should be
distributed quasi-homogeneously, S(θ) ∝ sin2 θ, and would
not be concentrated within polar caps.

Using now relation (50), one can obtain an expression
for the surface current averaged over the polar cap (here rm

60 70 80 90 100 110 120 r
0.0

0.4

0.8

1.2

1.6

b(χ)

(1)
(2)
(3)

Figure 4. Dimensionless averaged radiative magnetic field b(χ)
(56) for inclination angles χ = 30◦ (lower curve), 60◦ (middle),

and 90◦ (upper curve) for ε = 0.1.

and ϕm are again polar cap coordinates)

< Jθ >=
1

scap

∫
Jθ rmdrmdϕm, (52)

that provides the main part of MHD energy losses WMHD
tot

(1) for the orthogonal rotator

< Jθ >=
(k1 + k2)

2

c

4πf∗
B0

(
ΩR

c

)2

. (53)

Here we neglect the direct action of volume currents. Accord-
ingly, the averaged toroidal magnetic field < Bϕ > within
open field lines region at the distance r is to be equal to

< Bϕ >=
(k1 + k2)

2

1

f∗
B0

(
ΩR

c

)2
R

r
. (54)

It can be directly obtained by determining the energy flux
through the corresponding area s(r) = f∗π(Ω/c) r3. For ar-
bitrary inclination angle χ the appropriate component of the
magnetic field (which is perpendicular to the plane contain-
ing Ω and m) is

B⊥ = Bϕ cosϕ+Bθ sinϕ. (55)

In Fig. 4 we show the dimensionless averaged radiative
magnetic field b(χ) determined as (see Appendix C for more
detail)

< Bϕ >= b(χ)
1

f∗
B0

(
ΩR

c

)2
R

r
(56)

for three different inclination angles χ = 30◦, 60◦, and
90◦, also taken from MHD numerical simulations obtained
by Gralla et al. (2017) (ε = 0.1). As we see, for large enough
distances from the the star (but certainly within the light
cylinder) the r-dependence of < Bϕ > indeed corresponds
to (54). Thus, radiative magnetic field B⊥ behaves in the
same way as in a magneto-dipole wave, but at small, not
large distances r � RL.

Moreover, in Table 1 we present comparison of numer-
ical (see Fig. 4) and analytical (relation C2) evaluations of
dimensionless radiative magnetic field b(χ) (56). The uncer-
tainties are mainly due to inaccuracy in the quantities f∗,
k1 and k2. As we see, here we have good enough agreement
as well.

As a result, it becomes clear why there was a difference
between separatrix current Isep found by Bai & Spitkovsky
(2010) (Isep is about 20% of the volume current) and the pre-
dicted value 75% (51). For a circular polar cap and homoge-
neous surface current distribution, separatrix current can be

MNRAS 000, 1–?? (2017)
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Table 1. Comparison of numerical (see Fig. 4) and analytical

(C2) evaluations of dimensionless radiative magnetic field b(χ)
(56).

χ 30◦ 60◦ 90◦

b(χ) (numerical) 0.8 1.2 1.4

b(χ) (analytical) 0.6± 0.1 1.0± 0.1 1.2± 0.1

determined analytically, and we obtain (see Appendix B2)

Isep
Ivol

=
3

4
− 2

f
3/2
∗

(
ΩR

c

)1/2

. (57)

It gives Isep ∼ (0.2–0.3) Ivol, which is in good agreement
with the result obtained by Bai & Spitkovsky (2010) (they
have ΩR/c = 0.3).

It is necessary to stress that for ordinary radio pulsars
(P ∼ 1 s, i.e. (ΩR/c)1/2 ∼ 10−2) additional separatrix cur-
rent Iaddsep is 100 times smaller than the volume current Ivol
circulating in the magnetosphere of orthogonal rotator. This
property can be easily understood. Indeed, due to our nor-
malization procedure iA ∼ (Ωr/c)−1/2 (A16) volume current
circulating in the magnetosphere of orthogonal rotator

Ivol =
ia
2π

ΩB0

R
R3

0 (58)

just corresponds to volume current circulating in the mag-
netosphere of aligned rotator. But the distance from the axis
r⊥ in (16) for orthogonal rotator is (Ωr/c)−1/2 times larger
that for axisymmetric case. For this reason much smaller ad-
ditional separatrix current is enough to make a significant
contribution to the energy losses.

Remember that so far we discuss the properties of MHD
solution predicting energy losses WMHD

tot (1). But let us write
down now the additional braking torque in general form as

Kadd
⊥ = −A B2

0Ω3R6

c3
ia, (59)

and try to estimate the dimensionless constant A from the
results of numerical modeling. Since, as was shown, in this
case the dimensionless longitudinal current is estimated as
ia ∼ (ΩR/c)−1/2, then the coefficient A turns out to be equal
to

A ∼ (ΩR/c)1/2. (60)

For such a small value A � 1, one can neglect the magne-
tospheric contribution Kadd

⊥ (59) for the local GJ current
ia ∼ 1 for χ 6= 90◦, which was done within the framework of
BGI model (Beskin et al. 1993).

4 CONCLUSION

Thus, direct analysis of the angular distribution of the en-
ergy flux inside the light cylinder demonstrates that the en-
ergy flux is concentrated within narrow region of open mag-
netic field lines. At first, this implies the absence of magneto-
dipole losses which angular distribution is to be more ho-
mogeneous. As to pulsar wind, it should be considered as
an example of a relativistic magneto-hydrodynamical wave,
which unusual properties (e.g., important role of displace-
ment current) were previously unknown. For example, the

angular distribution of the energy flux in the pulsar wind
varies from sin2 θ for axisymmetric case to sin4 θ for the or-
thogonal rotator. Already in this point there is a significant
difference from magneto-dipole losses, for which the losses
at large distances are proportional to (1+cos2 θ) (Landau &
Lifshitz 1971). The absence of energy flux along the axis of
rotation (i.e., at θ = 0) for the inclination angle χ = 60◦ was
already noted by Beskin et al. (2013) by the direct analysis of
the results of numerical simulation performed by Spitkovsky
(2006).

Further, we have shown the importance of additional
separatrix currents circulating in the pulsar magnetosphere
which provide the most energy losses for incline rotator. It is
important that these currents connect both magnetic poles
of a rotating neutron star, but do not outflow beyond the
light cylinder. For electromagnetic waves in vacuum this is
a common case (electric currents of the point dipole are lo-
cated well inside the light cylinder), as the energy is trans-
ported by electromagnetic (Pointing) flux. The same takes
place in relativistic MHD wave under consideration.. The
amplitude of this current is to be much smaller than the
total current circulating in the magnetosphere. For this rea-
son the structure of this current near the light cylinder is
unclear. Numerical simulations give us only the qualitative
indication of its existence; quantitative consideration was
not produced yet.

Finally, we would like to draw attention to the following
circumstance. Starting from Shitov (1983), the additional
bending of magnetic field lines δϕrot = 1.2(r/RL)3 sin2 χ
was widely considered in the analysis of mean profiles of
radio pulsars (see, e.g., Lyne & Graham-Smith 2006). But
this value was obtained for magneto-dipole mechanism of
pulsar braking when the disturbance of toroidal magnetic
field (29) is small enough. As was demonstrated above, ra-
diative toroidal magnetic field (54) is much larger. Accord-
ingly, much larger is to be the bending angle

δϕrot ≈
(
r

RL

)2

sin2 χ. (61)

Direct detection of such a large bending angle should be in-
dependent confirmation of large enough longitudinal current
j‖ ∼ ε−1/2jGJ predicted by MHD numerical simulation.
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APPENDIX A: BRAKING TORQUE BY
SYMMETRIC AND ANTI-SYMMETRIC
CURRENTS

A1 Basic equations

In this Appendix we remember the general explressions for brak-

ing torque due to surface current Js closing longitudinal magne-
tospheric currents j‖ (Beskin et al. 1993). Using definitions (16)

and (35), we obtain for two components of the braking torque

K = K‖ em +K⊥ n1 (39):

K‖ = −
B2

0R
4Ω

c

∫ 2π

0

dϕm

2π

∫ x0(ϕm)

0
dxm x2m

√
1− x2m

∂ξ

∂xm
,

(A1)
and K⊥ = K1 +K2, where

K1 =
B2

0R
4Ω

c

∫ 2π

0

dϕm

2π

∫ x0(ϕm)

0
dxmA(xm, ϕm), (A2)

K2 =
B2

0R
4Ω

c

∫ 2π

0

dϕm

2π

∫ x0(ϕm)

0
dxm x3m cosϕm

∂ξ

∂xm
,(A3)

and

A(xm, ϕm) = xm cosϕm
∂ξ

∂xm
− sinϕm

∂ξ

∂ϕm
. (A4)

Here again xm = rm/R, and we also took into account that both
magnetic poles contribute to the slowing-down moment.

Since integration over xm in (A2)–(A3) is taken to the po-

lar cap boundary x0(ϕm) ∼ ε1/2, as an estimate, we could take
K2 ∼ εK1, i.e., K2 � K1. However, as is readily checked, when

the boundary condition (37) is satisfied, the integrand in (A2) is

a complete derivative with respect to ϕm:∫ x0(ϕm)

0
dxm

(
xm cosϕm

∂ξ

∂xm
− sinϕm

∂ξ

∂ϕm

)
=

∂

∂ϕm

[
−
∫ x0(ϕm)

0
dxm ξ sinϕm + ξ (x0, ϕm)x0(ϕm) sinϕm

]
. (A5)

Therefore, the contribution K1 appears identically equal to zero.

A2 Current structure

Here we show that the precision of approximation is = const
and ia = const is good enough to describe longitudinal currents

flowing in the pulsar magnetosphere. At first, remember that the

key role in particle motion in the pulsar magnetosphere belongs to
the electric drift associated with a strong electric field produced

by the rotation of a neutron star. As a result, the electric current

component transverse to magnetic field j⊥ can be written in the
hydrodynamical form j⊥ = ρeUdr, where

Udr = c
[E×B]

B2
(A6)

is the electric drift velocity.

Using now freezing-in condition (14), we obtain

j = ρe[Ω× r] + ΛB, (A7)

where Λ is a scalar function. The convenience of presentation

(A7) connects with the fact that scalar function Λ must be con-
stant along magnetic field lines. Indeed, using another Maxwell

equation ∇ × B = . . . written under the assumption of quasi-

stationarity (Mestel 1973; Beskin et al. 1983)

∇×
(

B− [
[Ω× r]

c
×E]

)
=

4π

c
(j− ρe[Ω× r]), (A8)

we immediately obtain that B · ∇Λ = 0.

According to (A7), near the star surface where Br � Bϕ,
longitudinal current j‖ can be present as j‖ = ΛB0. In particu-

lar, as was recently shown by Gralla et al. (2017), parameter Λ

corresponding to numerical MHD solution Wtot ∝ 1 + sin2 χ (1)
can be extrapolated as2

Λ = −
Ω

2π
[J0(τ) cosχ+ J1(τ) cosϕm cosχ] , (A9)

where

τ = 2 arcsin(ε−1/2f
−1/2
∗ xm). (A10)

Here again ε = ΩR/c, f∗ is dimensionless polar cap area, and
J0(τ) and J1(τ) are Bessel functions of the first kind. Comparing

this expression for τ � 1

Λ = −
Ω

2π

[
cosχ+ ε−1/2f

−1/2
∗ xm cosϕm cosχ

]
(A11)

with our definition (33)–(34), we obtain

is ≈ 1, (A12)

ia ≈
2

3
f
−1/2
∗ ε−1/2. (A13)

For orthogonal case the value ia can be also evaluated from

orthogonal wind solution (5)–(6). Indeed, using radial component
of Maxwell equation

1

r sin θ

∂

∂θ
(Bϕ sin θ) =

4π

c
jr =

4π

c
ΛBr (A14)

we immediately obtain

Λ = −
3

4π
Ω cos θ. (A15)

Comparing now the total electric current I =
∫
i‖Brds with Λ

2 Here it is necessary to stress that this result was obtained under

the assumption that the polar cap is circular.
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from (A15) flowing through the upper hemisphere of the orthogo-

nal wind (5)–(6) and the total current flowing through the north-

ern part of the polar cap on the surface of a star (and taking into
account that the value Λ is constant along magnetic field lines),

one can obtain (Beskin 2018)

ia ≈ f−1/2
∗ ε−1/2. (A16)

A3 Braking torque

As was mentioned above, both analytical (Beskin et al. 1983) and

numerical (Bai & Spitkovsky 2010; Gralla et al. 2017) simulations

demonstrate that the disturbances of the polar cap boundary do
not exceed 20%. Analyzing now relations (A1), (A3) one can find

that for circular polar cap region x0 = const only ϕ-independent
values is(rm) and ia(rm) contribute to the braking torque com-

ponents K‖ and K⊥ (the contribution of all other terms of the

expansion in terms of a and bsinnϕ and cosnϕ vanish).

As a result, the expressions for K‖ and K⊥ have the form

K‖ = −c‖
B2

0Ω3R6

c3
cosχ, (A17)

K⊥ = −c⊥
B2

0Ω3R6

c3

(
ΩR

c

)
sinχ, (A18)

where c‖ ∼ is and c⊥ ∼ ia are given by expressions (46) and (47).
In general case these factors dependent on the particular profile

of the longitudinal current is(rm, ϕm) and ia(rm, ϕm) and on the

form of the polar cap.

APPENDIX B: SEPARATRIX CURRENTS

B1 Separatrix currents due to volume currents
flowing within open magnetic fild lines

For simplicity, let us consider orthogonal rotator (χ = 90◦) with

a circular polar cap. We also suppose that the volume current

flowing along open magnetic field lines is proportional to local
Goldreich-Julian charge density (32), i.e. j‖ = iajGJ, ia = const,

where now

jGJ =
ΩB

2π
=

3

2

ΩB

2π

rm sinϕm

R
. (B1)

Then the total volume current Ivol inflowing in the north hemi-

sphere and outflowing from the south one within one polar cap

is

Ivol =

∫ R0

0

∫ π

0
j‖rmdrmdϕm =

ia

2π

ΩB0

R
R3

0. (B2)

Using now explicit expression for the surface current Js = ∇ξ,
where the potential ξ is given by (45) and again supposing the

absence of surface currents outside the polar cap (∇ξ = 0 for

rm > R0), we can determine the surface separatrix current Jsep
through the jump of radial derivative

Jsep(ϕm) = {∇rξ} =
3ia

16π
ΩB0R

2R
2
0

R3
sinϕm. (B3)

Integrating this value along the polar cap boundary in the upper

hemisphere, we finally obtain for total separatrix current

Isep =

∫ π

0
Jsep(ϕm)R0dϕm =

3ia

8π

ΩB0

R
R3

0, (B4)

in agreement with (51).

B2 Additional separatrix current

Suppose now that along the separatrix there is additional electric

current resulting in surface current Jadd
s . Again for simplicity we

assume that within polar cap this surface current is homogeneous:

Jadd
s = Jaddeθ (Jadd = const), i.e. for rm < R0

Jadd
r = −Jadd sinϕm, (B5)

Jadd
ϕ = −Jadd cosϕm. (B6)

The main difference with the current structure considered
above in Appendix B1, is that here the surface currents exist not

only inside, but also outside the polar cap (just for this reason

they were previously rejected). Indeed, solving continuity equa-
tion (36) with zero r.h.s. and with the boundary condition (37),

we obtain for xm > x0

Jadd
r = Jadd sinϕm

(
x0

xm

)2

, (B7)

Jadd
ϕ = −Jadd cosϕm

(
x0

xm

)2

. (B8)

It gives for the separatrix current

Jadd
sep (ϕm) = {∇rξ} = 2Jadd sinϕm. (B9)

Thus, the total additional separatrix current is

Iaddsep =

∫ π

0
Jsep(ϕm)R0dϕm = 4R0J

add, (B10)

one half closing inside the polar cape while the second half outside
it.

On the other hand, to determine the magnitude of the ad-

ditional separatrix currrent Iaddsep one can use general expression
(50). As a result, we immediately reproduce (53). Finally, gath-

ering together expressions (A16), (B2), and (B10), we obtain

Iaddsep

Ivol
= −

k1 + k2

f
3/2
∗

(
ΩR

c

)1/2

. (B11)

For k1 = k2 = 1 we return to (60).

Here it is necessary to stress that surface currents outside
the polar cap do not contribute to energy losses. This property

connects with different sign in (B7) in comparison with (B5). For

this reason energy losses outside the polar cap are proportional
to (sin2 ϕm − cos2 ϕm). Being integrated over ϕm, they vanish.

APPENDIX C: ADDITIONAL TOROIDAL
MAGNETIC FIELD

In this Appendix we evaluate the expected value of average radia-
tive magnetic field < Bϕ > which we define through the dimen-

sionless parameter b(χ) (56). Accordingly, energy losses connected

with additional separatrix electric current looks like (again do not
forget that pulsar has two magnetic poles)

Wsep =
b(χ)

2

B2
0Ω4R6

c3
sinχ. (C1)

As was already stressed, energy losses Wvol (42) are too
small to explain MHD energy losses WMHD

tot (1). Nevertheless,

for ΩR/c ∼ 0.1 these terms can make a significant contribution
to the energy budget. For this reason the expective value for pa-

rameter b(χ) can be presented as

b(χ) =

[
k1 + k2

2
−
f
5/2
∗
32

(
ΩR

c

)1/2
]

sinχ. (C2)

Remember that evaluations (54)–(56) correspond to our assump-

tion that longitudinal volume electric current is proportional to
local Goldreich-Julian current jGJ (32). As was shown recently

by Gralla et al. (2017), this assumption agrees with numerical
simulation.
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