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ABSTRACT
We show that a quasi-cylindrical configuration of a jet in the central region, where direct
electric current flows, is confined in a radial equilibrium by a spiral wave at the periphery
of a jet. A spiral wave means that in a coordinate system moving with the velocity of the
matter along the axis of the jet, all quantities are proportional to exp {ik‖z + imφ}, z is the
longitudinal coordinate, and φ is the azimuthal angle. The luminosity of such a jet corresponds
to observations. It is also shown that the jet slowly expands with distance z from its base by
the power law, R(z) ∝ zk, where the exponent k varies from �0.5 to �1.
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1 IN T RO D U C T I O N

Jets in astrophysics are observed as highly collimated flows of
matter from central objects, which are either supermassive black
holes in the case of active galactic nuclei (AGNs) or black holes of
solar masses in microquasars. In addition, jets are observed from
white dwarfs, protostars, cataclysmic variables, and powerful radio
pulsars, such as the pulsar in the Crab nebula. In laboratory plasmas,
jets, or directed flows, are observed in devices such as plasma focus
(Beskin et al. 2017a). The main puzzle of jets is their high degree
of collimation. It is not clear how hot matter of jets, ionized gas in
a strong magnetic field, confined in the cylindrical radius direction,
which is the direction perpendicular to the axis of the jet. Neither hot
gas nor external magnetic field is usually observed in the interstellar
and intergalactic environment surrounding a jet.

We will study the problem of radial equilibrium of the jet in the
framework of ideal magnetohydrodynamics (MHD). This approx-
imation is well suited for astrophysical jets. Dissipative effects are
weak in hot plasma. In addition, large mean-free paths of particles,
the presence of a strong magnetic field, in which cyclotron radii
play the role of particle mean-free paths, and small cyclotron radii
of ions in comparison with the characteristic scales of jets allow us
to use ideal MHD for the description of astrophysical jets.

It has been shown before that the problem of equilibrium of
the jet in the radial direction within the framework of MHD is
related to electric currents flowing inside the jet. If the jet carries
uncompensated current, i.e. the total current of the jet is not zero, the
current can be pinched to keep the hot jet in equilibrium (Blandford
& Payne 1982; Heyvaerts & Norman 1989; Sulkanen & Lovelace
1990; Li, Chiuch & Begelman 1992; Pelletier & Pudritz 1992;
Sauty & Tsinganos 1994). However, the question arises how to
close the uncompensated current loop. If you let the return current
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flow outside the jet, it is not clear where it goes since track of the
return current is usually not visible. It is more convenient to assume
that return current flows inside the jet on its periphery. This raises
the problem of the equilibrium of the jet in the region of return
current. The return current repels from the direct one, and within
the framework of a purely radial structure, there is no equilibrium,
if there is no contribution of the surface current at the edge of the
jet (Lery et al. 1998; Beskin & Malyshkin 2000; Lyubarsky 2009;
Beskin & Nokhrina 2010). Here we will explore another possibility
– the emergence of spiral structure in the region of return current
flow.

2 C Y L I N D R I C A L F L OW

Let us consider stationary MHD equations in a coordinate system
moving with the plasma flow along its axis with the velocity u.

∇(ρv) = 0; (1)

(v∇)v = − 1

ρ
∇P (ρ) − 1

8πρ
∇B2 + 1

4πρ
(B∇)B; (2)

curl[vB] = 0, (3)

∇ B = 0. (4)

Here ρ is the plasma density of the jet, v is velocity of the plasma,
B is the magnetic field, and P(ρ) is the plasma pressure, which
is a function of the density through the equation of state of the
matter in the jet. Suppose first that all quantities depend only on
the cylindrical radius coordinate r, that is, the jet is axisymmetric
and homogeneous along axis z. In this case, the velocity and the
magnetic field can be expressed as functions of r,

v = eφvφ(r), B = eφBφ(r) + ezBp(r).

Velocity vφ is the speed of the rotation of the jet, Bp is the poloidal
magnetic field, and Bφ is the toroidal magnetic field. It should be
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noted that the radial velocity vr and the radial magnetic field Br in
the case of only cylindrical radius dependence are zero by virtue of
conditions ∇(ρv) = 0, ∇B = 0 (1, 4) and finiteness condition at
r = 0. Then the equilibrium condition in the radial direction looks
as follows:

d

dr

(
P + B2

p

8π
+ B2

φ

8π

)
= ρ

v2
φ

r
− B2

φ

4πr
. (5)

Here, on the left-hand side there is the total pressure of the matter
and the magnetic field, and on the right-hand side there are the
centrifugal force per unit volume and the tension force per unit
volume associated with the curvature of the magnetic field. Toroidal
magnetic field Bφ enters into equilibrium twice, as the pressure
on the left-hand side, and as the tension on the right-hand side,
preventing expansion of plasma. Equation (5) can be transformed
to the form

d

dr

(
P + B2

p

8π

)
= ρ

v2
φ

r
− 1

8πr2

d

dr

(
r2B2

φ

)
. (6)

If the pressure Pp = P + B2
p/8π, which is the sum of the gas pres-

sure and the pressure of the poloidal magnetic field, is maximal
at the centre of the jet r = 0, then its decline to the periphery is
compensated by the tension of the toroidal field Bφ ∝ r, created by
the longitudinal electric current jz flowing in the jet centre. There-
fore, in the centre of the jet there are no problems with the plasma
confinement, the longitudinal electrical current is enough to pinch
plasma. If we assume that in the centre of the jet a fairly uniform
direct current flows (Bφ ∝ r), the pressure Pp has a parabolic form
in the centre (Pp ∝ (1 − r2/R2)) and the rotation of the matter in
the centre is almost solid (vφ ∝ r), then all terms in equation (6) are
proportional to r. As a result, the value of the direct current in the
centre, r < rc, is determined by the relation following from equation
(6)

(jz|r=0)2 = c2

2π

[
ρ0

(
dvφ

dr

∣∣∣∣
r=0

)2

+
∣∣∣∣d2Pp

dr2

∣∣∣∣
r=0

]
.

The pressure in the jet at the radius of the direct current can drop
significantly, Pp|r=rc � Pp|r=0(1 − r2

c /R2).
On the periphery, the longitudinal current jz changes sign to close

the total electrical current loop flowing in the jet. In this case, the
toroidal magnetic field ceases to grow with a radius and begins to
fall faster than ∝ r−1, Bφ = 4π

∫ r

0 jz(r ′)r ′dr ′/cr . This means that
the pressure force of the toroidal magnetic field begins to exceed its
tension, and the right-hand side of equation (6) is always positive
on the periphery. It is clear that at the jet boundary r = R the matter
density ρ and the pressure P(ρ) should vanish. The speed of rotation
vφ should also disappear due to the fact that the rotation of the jet
is associated with the rotation of the central object (black hole or
star) and with the rotation of the accretion disc around the central
object, and the involvement of matter into rotation falls at large
distances from the axis. In addition, rotation of an ideal plasma in the
poloidal magnetic field generates a radial electric field Er = −vφBp.
Its disappearance and disappearance of the electric charge density,
ρe = d(rEr)/dr/4πr, at the jet boundary r = R, result to vanishing
of the rotation speed vφ at the boundary. Otherwise surrounding
charges outside the jet would lead to neutralization both the radial
electric Er and the charge density ρe. The magnetic fields Bp and
Bφ must also disappear at the jet boundary: the toroidal one due
to the complete closure of the longitudinal electric current, and the
poloidal one due to its origin – this field is frozen into the jet stream
and the jet captures the poloidal magnetic field at its base in the

magnetospheres of black holes and neutron stars. In a word, the left-
hand side of equation (6) is negative near the jet boundary, and the
radial equilibrium of the axisymmetric highly collimated jet cannot
be achieved unless one assumes that the pressure of the matter
outside the jet exceeds pressures of gas and poloidal magnetic field
inside (Beskin et al. 2017b). Here we explore another possibility of
radial stabilization – the presence of a spiral structure in the jet.

3 SP I R A L WAV E

Suppose that all quantities in the jet are superpositions of a homo-
geneous field and a spiral wave

ρ = ρ(r) + ρ1(r) exp{ik‖z + imφ},
P = P (ρ) + P1(r) exp{ik‖z + imφ},
v = eφvφ(r) + v1(r) exp{ik‖z + imφ},
B = eφBφ(r) + ezBp(r) + B1(r) exp{ik‖z + imφ}. (7)

Here k‖ and m/r are the longitudinal and azimuthal wave numbers,
respectively, and m is an integer. Values with index ‘1’ must satisfy
equations

∇(ρ1v) + ∇(ρv1) = 0,

∇ B1 = 0,

(B∇)v1 + (B1∇)v + B∇v1 − (v1∇)B − (v∇)B1 = 0,

ρ [(v∇)v1 + (v1∇)v] − ρ1
v2

φ

r
er =

− ∇
(

∂P

∂ρ
ρ1

)
+ 1

4π
[(B∇)B1 + (B1∇)B − ∇(BB1)] . (8)

Here all terms of the equations are proportional to the first har-
monic of the wave exp {ik‖z + imφ}. We are primarily interested
in the solution of equations (8) near the jet boundary r � R, where
the return longitudinal electric current flows and the equilibrium
of the homogeneous jet (6) is not possible without external pres-
sure. The quantities Bp(r), Bφ(r), vφ(r), ρ(r), P(r) vanish on the
boundary r = R, therefore near the boundary they can be represented
in the form

Bp = B ′
pξ, Bφ = B ′

φξ, vφ = v′
φξ, ρ = ρ ′ξ,

where ξ = R − r, and values with index ′ are constants. There are no
reasons to consider that near the boundary of the jet some values with
the index ‘prime’, i.e. first derivatives, vanish, and it is necessary to
take into account higher derivatives in the expansion over powers
of ξ . Therefore, for the general case quantities B ′

p, B ′
φ, v′

φ, ρ ′ �= 0,
although in separate cases this can happen, which require a separate
investigation. In addition, the radial velocity v1r, the radial magnetic
field B1r and the density ρ1 in the wave must also vanish on the
boundary r = R. Substituting these relations into system (8), we
obtain

ρ1
∂P

∂ρ
= − ξ

4πB ′
p

(
B ′2

φ + B ′2
p

)
B1z, (9)

v1r = −i
ξ

R

mv′
φ

B ′
p

B1z, (10)

v1φ = v′
φ

B ′
p

k‖RB ′
p + 2mB ′

φ

k‖RB ′
p + mB ′

φ

B1z, (11)
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v1z = mv′
φ

k‖RB ′
p + mB ′

φ

B1z, (12)

B1r = −i
ξ

R

k‖RB ′
p + mB ′

φ

B ′
p

B1z, (13)

B1φ = B ′
φ

B ′
p

B1z. (14)

In contrast to the axisymmetric solution, the radial velocity v1r

and the radial magnetic field B1r in the spiral wave are not equal
to zero inside the jet. We see that all quantities in the wave are
proportional to an arbitrary amplitude, which is the value of the
longitudinal magnetic field B1z. We note that the longitudinal v1z and
the azimuthal v1φ velocities in the wave formally turn into infinity
(11,12) for exact resonance at the jet boundary, k‖RB ′

p + mB ′
φ = 0,

when the phase of the wave exp {ik‖z + imφ} remains constant
along the magnetic field spiral z = RφB ′

p/B ′
φ . The exact resonance

requires taking into account the dissipative effects which are not
present in the ideal MHD. However, it is clear that the wave numbers
k‖ and m/R are approximately related as k‖RB ′

p � −mB ′
φ , at which

the excitation of a spiral wave is most probable.
A spiral wave with constant amplitude near the jet boundary

(see equations (11, 12, 14)) affects the equilibrium in the radial
direction. Indeed, the quadratic terms of ρ1, v1 and B1 in the original
equation (2) give an additional contribution to the radial equilibrium.
On the right-hand side of equation (6), there appears a term Q(r),

dPtot

dr
= ρ

v2
φ

r
− 1

8πr2

d

dr

(
r2B2

φ

) + Q(r),

where Q(r) is equal to

Q(r) = − d

dr

(
1

4

∂2P

∂ρ2
|ρ1|2 + |B1|2

16π

)
+ er

8π
(B1∇)B∗

1

− ρer

2
(v1∇)v∗

1 − ρ1er

2

[
(vφ∇)v∗

1 + (v∗
1∇)vφ

]
. (15)

Here the index * means the complex conjugation. Substituting wave
quantities (9–14) into the expression for Q(r) and neglecting terms
proportional to ξ , we obtain

Q(r) = − d

dr

|B1φ |2 + |B1z|2
16π

(16)

The physical meaning of the answer is quite simple: pressure of
the spiral wave on the periphery of the jet, |B1|2/16π, keeps the jet
from radial expansion, when the amplitude of the spiral wave is

|B1|2 = 16πPp|r=rc . (17)

In conclusion, it should be noted that the formally obtained solu-
tion of (7) is exact only if |B1|2 
 16πPp|r = 0, that is, R − rc 

R when we can restrict ourselves only to the first harmonic of
exp {ik‖z + imφ}. Otherwise, the solution will contain higher har-
monics, Bl exp {il(k‖z + mφ)}, l is an integer, l > 1. However, it is
qualitatively clear that the amplitude of the spiral wave,

Bsp =
∞∑
l=1

Bl exp{il(k‖z + mφ)},

equals |Bsp|2 � 16πPp|r=rc .
We have computed levels of constant values of the integral∫ |B2|dl (Fig. 1) for the configuration of the magnetic field (7)

representing a combination of a cylindrical axisymmetric jet in the

Figure 1. Levels of constant
∫ |B2|dl. The direct current radius is rc = 3R/4.

The pressure profile in the central part of the jet is selected in the form of
a parabola, B2

p ∝ (1 − r2/R2). The spiral wave on the periphery of the jet,
r > 3R/4, has the wave numbers m = −1, k‖R = 1.

centre and spiral wave on the periphery. We assume that the radi-
ation emission is proportional to the square of the magnetic field,
and that the total intensity is the sum of emissivities from regions
located along the line-of-sight l perpendicular to the axis of the jet.
For comparison, we present observations of the jet from the 3C273
quasar in radio, optics, and X-ray ranges (Marshall et al. 2001;
Fig. 2). One can see a qualitative agreement, especially in optics.

4 R A D I A L E X PA N S I O N O F J E T

The radial equilibrium achieved as a result of balance of the gas
pressure and the pressure of the poloidal magnetic field with the
tension of the toroidal magnetic field in the region of the direct
current, r < rc, and with the magnetic field pressure of the spiral
wave in the region of the return current, rc < r < R, leads to the
fact that the jet does not expand hydrodynamically for a short time.
However, the constructed solution for the jet is a quasi-stationary
in fact. The amplitude of the spiral wave Bsp on the edge of the jet
r = R has constant value, then falling to zero for r > R. Such profile
of Bsp cannot be stationary. Due to dissipative effects, for example,
magnetic diffusivity ν, the magnetic field must diffusely expand,
increasing the radius of the jet as R2(t) = νt, t > R2(z = 0)/ν.
Here time t is the time of the matter propagation from the bottom
of the jet, z = 0, to the point z(t), dz/dt = u(t). Under the condition
R2/ν � L/u, i.e. L/R 
 Re, where L is the length of the jet and
Re = uR/ν � 1 is the magnetic Reynolds number, the expansion of
the jet is slow, and the jet remains narrow. If motion is relativistic,
u � c, the expansion law takes the form R(z) = (νz/c)1/2. At large
distances z, the jet slows down, the speed u becomes not relativistic,
and the law of expansion becomes different. The dependence of
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Figure 2. Images of an astrophysical jet from Quasar 3C 273 in ground-
based radio (1.647 GHz), Hubble optical (617.0 nm), and Chandra X-ray
(with optical overlay) bands. Reprinted from Marshall et al. (2001).

Figure 3. Histograms of the power-law index k in R(z) ∝ zk fitted de-
pendence for 122 MOJAVE-1 sources derived from the 15 GHz data only
(bottom panel) and from combined 15 and 1.4 GHz measurements (top
panel), with medians of 0.80 and 0.95, respectively, shown by a dashed line.
Reprinted from Pushkarev et al. (2017).

R(z) can be found from the following relations: R ∝ t1/2, Bsp ∝
t−1/2, Ptot ∝ B2

sp, Ptot ∝ ρ�, ρuR2 = const. From these relations
the ratio t ∝ z� follows. Here � is the polytropic exponent in the
equation of state of the matter of the jet in the poloidal magnetic
field Bp. Thus, we obtain R(z) ∝ z�/2. It is interesting to note that
if the energy of the magnetic field dominates over the energy of
the particles in the jet, the exponent � = 2 due to the frozen-in
plasma into the magnetic field, B ∝ ρ. Then R(z) ∝ z. On the
contrary, if the energy of the plasma dominates in the jet, �/2
can vary from 2/3 in the case of relativistic gas to 5/6 in the
case of an ideal hydrogen nonrelativistic gas. Measurements of the
exponent k in the dependence R(z) ∝ zk for AGNs, carried out by
the MOJAVE programme (Pushkarev et al. 2017), give values close
to our predictions (see Fig. 3).

5 C O N C L U S I O N S

We have considered the possibility of keeping the jet in radial
equilibrium. Jet carries zero total electric current: direct current
in the central region r < rc, and the return current on the periphery
rc < r < R. If the jet remains axially symmetric over the entire
radius, 0 < r < R, then the radial equilibrium is not possible in the
region where the return electric current is flowing. If there is a spiral
wave, in which all quantities are proportional to exp {ik‖z + imφ},
on the periphery rc < r < R, then the pressure of the magnetic field
of the wave makes it possible to ensure a radial force balance. In
this case it is not necessary to have either gas pressure or magnetic
field external to the jet. Because in a spiral wave the magnetic field
oscillates along the length of the jet, the observed radiation of the
jet, which is proportional to the square of the magnetic field strength
|B|2, will also oscillate along the axis of the jet (see Fig. 1). The
resulting observational picture looks like a set of separate bright
spots (Fig. 1), which gives the impression that the jet is a sequence
of individual emissions. In fact, the jet is continuous, but has spiral
structure. The apparent radial structure of the jet is mainly due to
the fact that into the integral intensity ∝ ∫ |B2|dl there substantially
contributes peripheral parts of the jet above and below the axis,
where the spiral magnetic field has maxima and minima, depending
on the coordinate z.

Diffusive expansion of the jet boundary due to the dissipative
effects leads to a power-law dependence of the radius of the jet R(z)
on the distance z from its base, R(z) ∝ zk, where the exponent k
varies from �0.5 to �1, depending on the equation of state of the
matter in the jet, P (ρ) ∝ ρ� .
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