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ABSTRACT
Recent progress in very long baseline interferometry (VLBI) observations of relativistic jets
outflowing from active galactic nuclei gives us direct information about jet width rjet(l) depen-
dence on the distance l from the ‘central engine’. Being the missing link in previous works,
this relation opens the possibility of determining the internal structure of a jet. In this article,
we consider a relativistic jet submerged in an external medium with finite gas pressure Pext.
Neither an external magnetic field nor an infinitely thin current sheet will be assumed. This
approach allows us to construct a reasonable solution in which both the magnetic field and the
flow velocity vanish at the jet boundary r = rjet. In particular, the connection between external
gas pressure and internal structure of a relativistic jet is determined.
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1 IN T RO D U C T I O N

The most visible activity in compact astrophysical sources is con-
nected with strongly collimated jets. They are observed both in
relativistic objects such as active galactic nuclei (AGNs) and mi-
croquasars and in young stars where the motion of matter is non-
relativistic. Definite progress in recent very long baseline inter-
ferometry (VLBI) observations of relativistic jets outflowing from
active galactic nuclei (Lobanov 1998a; Cohen et al. 2007; Clausen-
Brown et al. 2013; Kardashev et al. 2014) gives us new information
concerning their physical characteristics and dynamics.

According to the commonly accepted point of view, the nature
of relativistic jets from AGNs is associated with highly magnetized
magnetohydrodynamical (MHD) flow originating due to fast rota-
tion of supermassive black holes (Blandford 1976; Lovelace 1976;
Krolik 1999; Beskin 2009; Meier 2012). Within this approach, it
is believed that electromagnetic energy flux plays the main role
in energy transfer from the ‘central engine’ to active regions. The
poloidal magnetic field generated in the disc links the rotating ‘cen-
tral engine’ (the disc and the black hole) and infinity. Thus, plasma
outflow and energy flux propagate along magnetic field lines. Due
to differential rotation of the disc and gas inertness, the field lines
are twisted, a toroidal component of the field occurs and the field
pressure connected with this component can collimate the gas.

More than 40 years of very extensive analytical
(Heyvaerts & Norman 1989; Pelletier & Pudritz 1992; Lery,
Heyvaerts & Appl 1998; Tomimatsu & Takahashi 2003; Beskin &
Malyshkin 2000; Komissarov et al. 2007; Zakamska, Begelman
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& Blandford 2008; Beskin 2009; Lyubarsky 2009) and numerical
(Koide, Shibata & Kudoh 1999; Gracia et al. 2009; Komissarov
et al. 2009; Tchekhovskoy, McKinney & Narayan 2009; Porth
et al. 2011; Mizuno et al. 2012; McKinney, Tchekhovskoy &
Blandford 2012; Penna, Narayan & S ↪adowski 2013; Tchekhovskoy
& Bromberg 2016; Mościbrodzka, Falcke & Shiokawa 2016) ex-
plorations allow us to clarify a number of very important features of
relativistic jets. In particular, it was demonstrated both analytically
(Beskin & Nokhrina 2006) and numerically (McKinney 2006;
Komissarov et al. 2009; Tchekhovskoy et al. 2009; Porth et al. 2011)
that, for highly elongated relativistic jets, very effective bulk ac-
celeration can take place. Remember that, in the quasi-spherical
case, the flow remains magnetically dominated (Tomimatsu 1994;
Beskin, Kuznetsova & Rafikov 1998). Numerical simulations show
that the MHD model can also explain jet collimation. For this
reason, the MHD model remains the most reliable in the context of
the problem of the origin and stability of jets and an explanation
for the energetics of the central black hole.

On the other hand, some key points remain unclear up to now.
In many articles dealing with the MHD model of these objects,
in which jet formation was connected with the attraction of lon-
gitudinal currents flowing in the magnetosphere, the majority of
attention was given to proper collimation, in the sense that the
environment was supposed to be of no importance (Blandford &
Payne 1982; Heyvaerts & Norman 1989; Pelletier & Pudritz 1992;
Sulkanen & Lovelace 1990; Li, Chiueh & Begelman 1992; Sauty &
Tsinganos 1994). However, as was shown later, this is possible only
for non-zero total current I flowing within a jet and the problem is
to close it in the outer regions of the magnetosphere.

Moreover, it is quite clear that the collimation problem can-
not be solved while ignoring the environment (see e.g. Appl &
Camenzind 1992, 1993). In particular, this is already evident from
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the example of the magnetosphere of a compact object with a
monopole magnetic field, since, for any arbitrarily small exter-
nal regular magnetic field, the monopole solution (for which the
poloidal magnetic field decreases as r−2) cannot be extended to
infinity. Moreover, as is well-known from the example of moving
space bodies such as Jupiter’s satellites (Zheleznyakov 1996) or
artificial Earth satellites (Al’pert, Gurevich & Pitaevskii 1965), the
external magnetic field can serve as an efficient transmission chain,
sometimes defining the total energy losses in the system.

Thus, one of the most important questions concerns the flow
structure nearby the jet boundary in the current closure region.
In general, the necessity to close the electric current in the co-
coon region (for both AGNs and young stellar objects) was recog-
nized many years ago (Lesch, Appl & Camenzind 1989; Benford
& Protheroe 2008b). However, the very topology of the magnetic
field in this domain remains unknown. Most researchers consider
a quasi-homogeneous longitudinal magnetic field but, according
to another point of view, ascending to the idea of the ‘magnetic
tower’ (Lynden-Bell 1996, 2003), a longitudinal magnetic field can
change direction in the vicinity of the jet boundary (Lico et al. 2007;
Benford & Protheroe 2008a; Kim et al. 2016, 2017).

Another point is connected with the question of whether there
is a contact discontinuity on the jet boundary or whether all val-
ues go over smoothly into the external environment. In most arti-
cles, an infinitely thin current sheet was actually introduced (Lery
et al. 1998; Beskin & Malyshkin 2000; Lyubarsky 2009; Beskin &
Nokhrina 2010), the internal structure of which has not been de-
scribed carefully enough. The difficulty is connected with a very
low energy density of the external media in comparison with one
inside the relativistic jet. For this reason, in some articles the ex-
ternal media were modelled by a homogeneous magnetic field with
energy density B2

ext/8π = Pext.
In this article, we present an approach that is free of the difficul-

ties mentioned above. In other words, we consider a relativistic jet
submerged in an external medium with finite gas pressure Pext. Nei-
ther an external magnetic field nor an infinitely thin current sheet
will be assumed. The main new point connects with the boundary
conditions. In what follows, we assume that both the magnetic field
and the flow velocity vanish at the jet boundary r = rjet. On the other
hand, we suppose that the flow remains supersonic. It is shown that
this approach allows us not only to construct a reasonable solu-
tion but also to determine the connection between the external gas
pressure and internal structure of a relativistic jet.

2 G R A D – S H A F R A N OV A P P ROAC H F O R
C Y L I N D R I C A L F L OW

2.1 Basic equations

In this section we recall the main relations of the Grad–Shafranov
approach. The basic equations describing the internal structure
of relativistic and non-relativistic jets within this approach were
formulated about 30 years ago (Heyvaerts & Norman 1989;
Pelletier & Pudritz 1992; Lery et al. 1998). This method allows
us to determine the internal structure of cylindrical jets, knowing in
the general case five ‘integrals of motion’, i.e. energy E(�) and an-
gular momentum L(�) flux, electric potential, which connects with
angular velocity �F(�), entropy s(�) and particle-to-magnetic flux
ratio η(�). All these values are to be constant along magnetic sur-
faces: � = const.

As has been shown by Beskin & Nokhrina (2006), a one-
dimensional (1D) cylindrical approximation describes well enough

the internal structure of parabolic jets starting from sufficiently
small distances from the ‘central engine’ corresponding to a fast
magnetosonic surface (lF ∼ 0.01 pc for ordinary AGNs). It allows
us to discuss parsec-scale jets within a much more simple cylindrical
geometry.

As a result, for cylindrical flows we can write the electric E
and magnetic B fields, as well as the four-velocity of a plasma
u = γ v/c, as

B = 1

2πr

d�

dr
ez − 2I

rc
eϕ, (1)

E = − �F

2πc

d�

dr
er , (2)

u = η

n
B + γ

(
�Fr

c

)
eϕ. (3)

Here �(r) is the flux function, i.e. the flux of magnetic field through
the circle with radius r:

�(r) = 2π

∫ r

0
Bz(r

′) r ′ dr ′ (4)

and I is the total electric current through this circle. Finally, n is the
number density in the comoving reference frame and γ 2 = u2 + 1
is the hydrodynamical Lorentz factor.

In addition to integrals �F(�) and η(�) determining the electro-
magnetic fields and hydrodynamical four-velocity, the total energy
flux E(�) and z-component of the angular momentum flux L(�),

E(�) = γμη + �FI

2π
, (5)

L(�) = ruϕμη

c
+ I

2π
, (6)

are to be determined from the boundary and critical conditions. Ac-
cordingly, the trans-field Grad–Shafranov equation can be rewritten
as (see e.g. Beskin 2009)

1

r

d

dr

(
A

r

d�

dr

)
+ �F

c2

(
d�

dr

)2 d�F

d�
+ 32π4

r2M2

d

d�

(
G

A

)

− 64π4μ2

M2
η

dη

d�
− 16π3nT

ds

d�
= 0, (7)

where

G = r2(E − �FL)2 + M2L2c2 − M2r2E2. (8)

Here, T is the temperature,

A = 1 − �2
Fr

2/c2 − M2 (9)

is the Alfvénic factor,

M2 = 4πμη2

n
(10)

is the Alfvénic Mach number,

μ = mpc
2 + mpw (11)

is the relativistic enthalpy (w is non-relativistic enthalpy) and the
derivative d/d� acts on the integrals of motion only. Finally, the
relativistic Bernoulli equation u2

p = γ 2 − u2
ϕ − 1 has the form

M4

64π4r2

(
d�

dr

)2

= K

r2A2
− μ2η2, (12)
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where

K = r2(e′)2(A − M2) + M4r2E2 − M4L2c2 (13)

and e′ = E − �FL.
As was shown by Beskin & Malyshkin (2000), it is convenient for

cylindrical flow to reduce one second-order Grad–Shafranov equa-
tion to two first-order ordinary differential equations for magnetic
flux �(r) and poloidal Alfvénic Mach number M(r). Multiplying
equation (7) by 2A d�/dr and using equation (12), one can ob-
tain, for the general case taking thermal effects into consideration
(Beskin & Nokhrina 2006),[

(e′)2

μ2η2
− 1 + �2

Fr
2

c2
− A

c2
s

c2

]
dM2

dr
= M6L2c2

Ar3μ2η2

+ �2
FrM2

c2

[
2 − (e′)2

Aμ2η2

]
+ M2 e′

μ2η2

d�

dr

de′

d�

+ M2r2

2c2

d�

dr

d�2
F

d�
− M2

(
1 − �2

Fr
2

c2
+ 2A

c2
s

c2

)
d�

dr

1

η

dη

d�

−
[

A

n

(
∂P

∂s

)
n

+
(

1 − �2
Fr

2

c2

)
T

] M2

μ

d�

dr

ds

d�
. (14)

Here, cs is the sound velocity, defined by c2
s = (dP/dn)|s/mp (in

what follows we consider the case cs � c), mp is particle mass
and P is gas pressure. Together with the Bernoulli equation (12),
it forms the system of two ordinary differential equations for the
Mach number M2(r) and magnetic flux �(r) describing cylindrical
relativistic jets.

It is important that, by determining the functions M2(r) and
�(r), one can find the jet radius rjet as well as the profile of the
current I(r), the particle energy and the toroidal component of the
four-velocity using standard algebraic expressions:

I

2π
= L − �Fr

2E/c2

1 − �2
Fr

2/c2 − M2
, (15)

γ = 1

μηc2

(E − �FL) − M2E

1 − �2
Fr

2/c2 − M2
, (16)

uϕ = 1

μηcr

(E − �FL)�Fr
2/c2 − LM2

1 − �2
Fr

2/c2 − M2
. (17)

Finally, as one can easily check, outside the central core (r �
c/�0) for super-Alfvénic flow (M2 � 1 and neglecting ther-
mal effects), equation (14) can be rewritten in the simple form
(Beskin & Malyshkin 2000)

d

dr

(
�Fr

2μη

M2

)
− M2

μη�Fr3(�2
Fr

2/c2 + M2)
L2 = 0. (18)

Without the last term ∝ L2(�), equation (18) results in the conser-
vation of quantity H,

H = �Fr
2μη

M2
= const, (19)

that was found by Heyvaerts & Norman (1989) for a conical mag-
netic field. On the other hand, comparing this relation with the
definition of current I (15), one finds that, for non-relativistic flow
on the edge of a jet (E = μη, M2 > �2

Fr
2/c2),

H = I

2π
. (20)

2.2 Integrals of motion and boundary conditions

As was already stressed, the system of two first-order ordinary
differential equations (12), (14) contains five integrals of motion. In
the general case, they are to be specified from boundary conditions
at the surface of the ‘central engine’ and from the critical condition
at singular surfaces (see e.g. Beskin 2009 for more detail). On the
other hand, for cylindrical flow these integrals are free. For this
reason, below we control only the reasonableness of our choice.

First of all, to describe the very boundary of a jet (i.e. the domain
of current closure), we have to specify integrals of motion in the
region � ≈ � tot, where � tot is the given total magnetic flux in
a jet. As, according to (15), the condition of full closing of the
current within the jet I(� tot) = 0 can be rewritten as L(� tot) = 0 and
�F(� tot) = 0, in what follows we use the following expressions for
these integrals (cf. Beskin & Nokhrina 2010):

L(�) = �0�

4π2c2

√
1 − �

�tot
, (21)

�F(�) = �0

√
1 − �

�tot
, (22)

where �0 is the characteristic angular velocity near the rotation
axis. In the vicinity of a rotation axis, these invariants correspond
to the well-known analytical force-free solution for a homogeneous
poloidal magnetic field. On the other hand, both of them vanish at
the jet boundary. This fact guarantees the fulfilment of the condition
I(� tot) = 0. For linear space diminishing of a magnetic field B(r) ∝
(rjet − r), this root dependence on � implies linear diminishing of
L(r) and �F(r) as well. Recall also that this root dependence takes
place for a homogeneous magnetic field in the vicinity of the central
black hole (Beskin 2009).

As was already stressed, in this article we assume that both the
magnetic field B and the flow four-velocity u vanish at the jet
boundary r = rjet. As one can see from (15) and (17), our choice
of L(�) and �F(�) guarantees that toroidal components Bϕ and
uϕ vanish at the jet boundary. On the other hand, according to
(3), for poloidal components one can write nup = ηBp. Thus, the
conditions up = 0 and Bp = 0 can be implemented for finite n and
η. For simplicity, we consider the case here:

η(�) = η = const. (23)

Further, below we suppose that the flow remains supersonic up to
the very boundary: M(rjet) > 1. This supposition allows us to do
our consideration less complex. Indeed, in this case equation (14)
has no additional singularity at the Alfvenic surface A = 0 in the
vicinity of the jet boundary.

As to the energy (Bernoulli) integral E(�), we can write

E(�) = �FL + μ0ηγ (�). (24)

Here, γ (0) = γ in is the injection Lorentz factor along the jet axis and
γ (� tot) = 1. The last relation implies that the flow velocity vanishes
at the jet boundary. As to relativistic enthalpy μ0 = mpc2 + mpw0

(11), we consider it here as a constant with w0 = c2
0/(	 − 1), where

constant c0 corresponds to the sonic velocity of a flow at the very
boundary.1 Certainly, relativistic enthalpy μ in equations (12) and

1 In this article we use a polytropic equation of state with polytropic index
	.
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(14) is to be determined via the local value w = c2
s /(	 − 1) (see

below). Finally, in what follows we put also,

s(�) = s = const. (25)

As we will see it is this non-zero value that allows us to match
a magnetically dominated flow to an external medium with finite
pressure.

In addition to five integrals of motion, the system (12), (14) needs
two boundary conditions. The first one is the clear condition at the
symmetry axis,

�(0) = 0. (26)

The second one can be found from the pressure balance Pext =
	−1c2

0mpn0, where n0 is the number density of a flow at the jet
boundary. Thus, we can determine the jet radius rjet as a function of
Pext self-consistently, as the conditions v(rjet) = 0 and B(rjet) = 0
are automatically fulfilled at � = � tot. Now, using definition (10),
one can write the second boundary condition, M2

0 = M2(rjet), as

M2
0 = 4π	−1m2

pc
2c2

0η
2

Pext
. (27)

It is necessary to note that, according to our supposition, M2
0 > 1,

i.e. c2
0 cannot be very small to fulfil this assumption. Accordingly,

in case cs � c the local non-relativistic enthalpy w looks like

w = c2
0

(	 − 1)

(M2
0

M2

)	−1

(28)

and, accordingly, μ = mpc2 + mpw. This definition emphasizes the
insignificance of thermal effects in the vicinity of the rotation axis
and corresponds to the usual non-relativistic enthalpy near to the
jet boundary. Thanks to these definitions, the system of equations
(12), (14) now becomes fully determined.2

Thus, we see that the physical answer depends on one external
parameter only, namely on the ambient pressure Pext. On the other
hand, as the sonic velocity c0 of a flow is fully determined by our
choice of the Bernoulli integral E(�) (24), i.e. it does not coincide
with the ambient sonic velocity, the solution inevitably contains
a contact discontinuity. However, unlike the electromagnetic dis-
continuity widely considered thus far, there is a hydrodynamical
discontinuity only.

It is convenient to rewrite M2
0 (27) as

M2
0 = 1

2	σ 2
M

c2
0

c2

B2
L

8πPext
. (29)

Here, by definition,

BL = �tot

πR2
L

(30)

is the magnetic field at the light cylinder RL = c/�0. Accordingly,

σM = �2
0�tot

8π2μηc2
(31)

is the so-called Michel (1969) magnetization parameter, which is the
main dimensionless parameter of the problem under consideration.

Recall that the physical meaning of the Michel magnetization
parameter is the maximum Lorentz factor γ of the hydrodynamical
flow when all electromagnetic energy flux is transferred to particles.
At present, rather small values σ M ∼ 10–103 are supposed for real

2 This last step was not made by Beskin & Nokhrina (2010).

relativistic jets (Lobanov 1998b; Nokhrina et al. 2015), but much
larger values are also discussed. For this reason, below we consider
σ M as a free parameter.

It is necessary to stress out that the magnetization parameter σ M

(31) introduced above represents its amplitude value. As one can see
from equation (6), the maximum Lorentz factor at a given magnetic
surface,

γmax = E(�)

μη
, (32)

for our choice of invariants (21), (22) looks like

γmax(�) = 2σM
�

�tot

(
1 − �

�tot

)
. (33)

Finally, analysing the relations (15)–(17), one finds that, for su-
personic flow (M2 � 1), the following conditions,

1 � x2
jet � M2σM, (34)

need to be satisfied. Here and below we the use dimensionless radial
coordinate

x = �0 r

c
, (35)

i.e. the radial distance normalized to the light cylinder RL. For
parsec-scale relativistic jets, xjet ∼ 103–105 (see e.g. Mertens
et al. 2016).

3 IN T E R NA L ST RU C T U R E O F R E L AT I V I S T I C
J E T S

3.1 Constructing the solution

In Fig. 1, we show an example of the solution of the system of two
ordinary differential equations (12), (14). As we see in the outer
region in the vicinity of the jet boundary the Mach number M
abruptly decreases. According to definition (10), this implies that
the number density increases outward and hence the gradient of gas
pressure for non-zero entropy is directed inward. It is this force that
balances the pressure of the magnetic field decreasing toward the
jet boundary.

As was already stressed, the main problem that hindered the con-
struction of a self-consistent solution was connected with the very
small ambient gas pressure in comparison with the electromagnetic

Figure 1. Typical solutions of of the system of two ordinary differential
equations (12), (14) for � (solid lines) andM2 (dashed lines) for σM = 100.
Thick and thin lines correspond to solutions with boundary Mach number
M2(0) = 6400 and M2(0) = 9100, respectively. The terminations of these
lines are radii of the jet.
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Figure 2. Current close region in the vicinity of a jet boundary (not to
scale). The dashed curve corresponds to invariant H (52).

pressure inside a relativistic jet. In our consideration, the current
closure follows from our choice of integrals �F(�) and L(�). As
a result, return current flows in a wide region corresponding to the
domain where L(�) diminishes with �. In this region, the magnetic
stress is balanced by the electric one, so that Bϕ ≈ Er. Only near the
very boundary of a jet does the gas pressure become important.

As a result, the shooting method (when we vary the Mach number
M(0) at the axis to fulfil the boundary condition M(�tot) = M0)
meets significant computational difficulties. Simultaneously, this
approach says nothing about the structure of the boundary of a jet.
For this reason, below we determine the asymptotic behaviour for
a r → rjet moving analytically inwards from radius r = rjet. As is
shown in Fig. 2, there are two characteristic radii, r1 and r2, all of
them, as is clear from Fig. 1, located in the close vicinity of the jet
boundary. For this reason, in what follows we put r1 ≈ r2 ≈ rjet.

3.2 Boundary layer

At first, let us consider the very boundary of a jet r1 < r < rjet. In
this region, the leading terms of equation (14) can be written as[

�2
0r

2

c2

(
1 − �

�tot

)
+ M2 c2

s

c2

]
dM2

dr
= −M4L2c2

3μ2η2

+ 2
�2

FrM2

c2
+ M2 e′

μ2η2

d�

dr

de′

d�
+ 1

2
M2 r2

c2

d�

dr

d�2
F

d�
. (36)

As far as Bernoulli equation (12) is concerned, here it is possi-
ble to use its non-relativistic version (Heyvaerts & Norman 1989;
Beskin 2009):

M4

64π4η2
n

(
d�

dr

)2

= 2r2(En − w)

− (�Fr
2 − LnM2)2

(1 − M2)2
− 2�Fr

2 Ln − �Fr
2

1 − M2
. (37)

Here,

En = E

mpη
− c2 = �FI

2πcηn
+ v2/2 + w (38)

is the non-relativistic Bernoulli integral, w = c2
s /(	 − 1) is the non-

relativistic enthalpy (again, 	 is the polytropic index), ηn = mpcη
and Ln = cL/ηn. For a non-relativistic outflow, it is possible to use

reduced expressions (Weber & Davis 1967):

In

2π
= cηn

Ln − �Fr
2

1 − M2
, (39)

vϕ = 1

r

�Fr
2 − LnM2

1 − M2
. (40)

For our choice of Bernoulli integral E(�) for � = � tot,

En(�tot) = w0 = c2
0

(	 − 1)
(41)

and, for expression (28) for non-relativistic enthalpy w(r), the right-
hand side of equation (37) vanishes, so that d�/dr → 0 for r →
rjet. Accordingly, due to equation (36), as d�2

F/d� → const, the
derivative dM2/dr → 0 at the jet boundary as well.

Now expanding the magnetic flux �(r) and Mach number M2(r)
to second order in δx = x − xjet, one can find

M2(x) = M2
0

[
1 + A

(
δx

xjet

)2

+ . . .

]
, (42)

�(x) = �tot

[
1 − B

(
δx

xjet

)2

+ . . .

]
. (43)

Here, M0 = M(rjet),

A ≈ x6
jet

σMM6
0

c2

c2
0

, (44)

B ≈ x4
jet

σMM4
0

(45)

and we again use dimensionless scale (35); inequalities (34) were
taken into consideration as well. Analysing expressions (44)–(45),
we immediately obtain, for the width of the boundary region
δr1 = rjet − r1 (see Appendix for elementary derivation),

δr1

rjet
= σ

1/2
M M3

0

x3
jet

c0

c
, (46)

where distance r1 corresponds to the condition

M2(r1)c2
s (r1) = �2

F(r1)r2
1 . (47)

It is easy to check that condition (47) implies that at distance
r = r1 the pressure of the toroidal magnetic field B2

ϕ/8π becomes
comparable with external pressure Pext. This gives, for the current,
I(r1) ≈ Ic, where

Ic = (2π)1/2 rjet c P
1/2
ext . (48)

Thus, it is this domain that corresponds to final current closure in a
jet.

As to the poloidal magnetic field, it can be neglected for super-
sonic flow, M2 � 1. Indeed, using definitions (1), (15) and the first
inequality (34), one obtains

Bp

Bϕ

≈ σ
1/2
M

xjet
� 1. (49)

Accordingly,

vϕ

vp
≈ σ

1/2
M

xjet
� 1. (50)
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Figure 3. Factor kI for different parameters of a jet. To the left of the vertical
line, the right inequality in (34) does not hold.

Finally, equations (42) and (46) result in

M(r1) ∼ M(rjet), (51)

i.e. the Mach number does not change so fast in this domain. This
supports our assumption M ≈ M0, which was used in derivation
(44)–(45).

3.3 Matching procedure and results

For smaller radii up to distance r2, where �FL = μη (and hence,
according to (32), γ max(r2) ≈ 1), the flow remains non-relativistic,
but the first term on the left-hand side of equation (36) becomes the
leading one. For this reason, as is shown in Fig. 2, here one can use
invariant H (19):

H = �F(r) r2μη

M2(r)
= const. (52)

As, according to (20), in this region H = I/2π, one can conclude
that here I = kIIc, where kI ≈ 1. Exact values of the factor kI can
be found by integrating equations (36) and (37) from r = rjet (see
Fig. 3). As we see to the right of the vertical line (where the right
inequality in (34) holds), the condition kI ≈ 1 is indeed fulfilled
with high accuracy.

It is important that the conservation of integral H is valid not
only up to radius r2, where the flow becomes relativistic, but even
to radius r < r2, where the flow becomes magnetically dominated
(M2 = �2

Fr
2/c2). As a result, one can write for the invariant H,

obtained by integrating equations (12), (14) inward from r = rjet to
r ∼ r2,

Hin(rjet, Pext) = kI(2π)−1/2c rjetP
1/2
ext . (53)

On the other hand, integrating equations (12), (14) outward from
r = 0 to the same region r2 < r < r1 and determining the dependence
Hout = Hout(rjet) numerically, we can put

Hin(rjet, Pext) = Hout(rjet), (54)

which implicitly gives us the relation between jet radius rjet and
ambient gas pressure Pext.

It is convenient to introduce dimensionless current h(x) =
2πH/IGJ:

h = 1

2

�F

�0

x2

σMM2
, (55)

Figure 4. Dimensionless function h(xjet) obtained numerically by solving
equation (12), (14) for different magnetization parameters σM.

where again x = �0r/c and

IGJ = �0�tot

2π
(56)

is the total characteristic current corresponding to relativistic
Goldreich–Julian charge outflow. Then relation (54) can finally be
rewritten as

xjet = 1

2(2π)1/2

h(xjet)

kI

BL

P
1/2
ext

, (57)

where again BL (58) is the magnetic field at the light cylinder.
In Fig. 4, we show the dimensionless function h(x) obtained for

σ M = 10, 102 and 103. As we see this factor is much smaller than
unity. According to its definition h = I/IGJ in the non-relativistic
region r2 < r < rjet, this implies that the total current returning in
the vicinity of the boundary of a jet r1 < r < rjet is much smaller
than the total current IGJ in a jet.

Finally, to estimate numerically the ambient pressure Pext that
is necessary to support the observable jet width, one can rewrite
relation (57) as

Pext ≈ h2(xjet)

x2
jet

B2
L

8π
. (58)

As one can check, it is the additional factor h2(xjet) � 1 that differ-
entiates our self-consistent estimation from the standard evaluation
corresponding to I 2

GJ/(2πr2
jet) = Pext.

It’s necessary to notice that relation Pext = B2
ϕ/8π = B2

L/(8πx2
jet)

was widely used in discussing the equilibrium of the jet (see e.g.
Lery et al. 1998; Zakamska et al. 2008; Lyubarsky 2009). However,
as we see in reality Ic � IGJ (h � 1). Accordingly, the value �F(r1) is
much smaller than the characteristic angular velocity �0. The same
concerns the angular momentum L. As a result, toroidal magnetic
field Bϕ(r1) is much smaller that in the main volume of a flow
and is to be found self-consistently by solving a general system of
equations. It is this point that distinguishes our consideration from
most previous ones.

On the other hand, relation (58) gives us the implicit connection
between ambient pressure Pext and transverse radius rjet. The ad-
vantage of this method is that the matching of relativistic equations
occurs not at the jet boundary but in the region where thermal effects
are not yet significant.

In Fig. 5, we show how the ambient pressure Pext depends on the
transverse dimension of a jet rjet for central mass M = 109 M

(gravitational radius rg ∼ 3 × 1014 cm) and �0rg/c = 0.1
and for different magnetization parameters σ M. We also use the
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Figure 5. Ambient pressure Pext as a function of jet radius rjet (pc) for
different magnetization parameters σM.

standard value B(rg) = 104 G, which gives BL = 102 G. As we
see for parsec-scale jets (rjet ∼ 1 pc) the ambient pressure should
be 10−8–10−10 dyne cm−2, which looks rather reasonable for small
magnetization of a jet σ M ∼ 10.

There are different estimates of how far from the jet origin the
jet radius reaches a size of the order of 1 pc. Thus, the question of a
realistic pressure model is open. On the one hand, ambient pressure
Pext ∼ 10−9 dyn cm−2 can be expected at a few tens of pc if we
consider typical interstellar medium (ISM) values Tism ∼ 1 keV for
the temperature and ne ∼ 1 cm−3 for number density (Krolik 1999;
Meier 2012). On the other hand, according to recent observations at
distances l ∼ 10–100 pc from the ‘central engine’, the collimation
of jets is high enough: γ θ ∼ 0.1–0.2 (Clausen-Brown et al. 2013).
Here, θ is the jet half-opening angle. It results in l ∼ 100 pc for
rjet ∼ 1 pc and γ ∼ 10. On the other hand, the observations presented
by Hervet et al. (2017) reveal a typical jet radius of 1 pc at distances
5–10 pc from the jet origin.

4 D I S C U S S I O N A N D C O N C L U S I O N

We succeeded in constructing a solution that describes the internal
structure of a cylindrical magnetically dominated jet submerged
in ambient medium with pure gas pressure. Neither an external
magnetic field nor an infinitely thin current sheet or cocoon were
assumed. The physical answer depends on the ambient pressure Pext

only. Moreover, resolving the current closure region, we determine
the thickness of the boundary zone δr1 (46) (see Appendix for more
details).

Also, it was shown that for magnetically dominated jets only
a small part h � 1 (55) of the total current I ∼ IGJ is closed in
the boundary layer. The greater part of the return current flows
in the region r < r2, where the invariant L(�) starts to decrease
as a function of �. Of course, the actual dependence (which is
determined by the conditions in the central engine) is not known
exactly. For this reason, we consider here the model dependence
only.

The results are fully applicable not only to a conical jet boundary
shape. The method presented of an accurate balance of jet pressure
with outer medium pressure is the most general. As has been shown
by Nokhrina et al. (2015), the cylindrical approach can be reliably
applied for the causally connected parts of relativistic outflows. In
particular, all outflows collimated not slower than a parabola are
casually connected and may be described by the cylindrical model.
As to the conical shape, Zakamska et al. (2008), Komissarov et al.
(2009) and Tchekhovskoy et al. (2009) showed that, for small angles

described by γ θ ≈ 0.1, the conical shapes also meet the criteria of
casual connectivity across the jet.

A very important conclusion is that the solution inevitably con-
tains a contact discontinuity at the jet boundary. Unlike the elec-
tromagnetic discontinuity that has been widely considered thus far,
in our solution we deal with a pure hydrodynamical discontinuity.
It may be considered as an additional cause of the wave structure
of the jet thickness that was detected in recent VLBI observations
(Mertens et al. 2016; Pushkarev et al. 2017). Certainly, careful anal-
ysis of the appropriate instability is beyond the scope of the present
article.

It is also important to stress that, for us, the ambient pressure
Pext plays the role of a boundary condition. Its nature is beyond the
scope of our consideration. Remember that ambient pressure can be
determined not only by the proper temperature of the ambient gas
but also by the heating processes resulting from interaction of the
supersonic flow of a jet with an external medium (Tchekhovskoy &
Bromberg 2016).

Next, we should to point out that, knowing how the jet thickness
rjet(l) depends on the distance l from the ‘central engine’, we have
the opportunity to obtain additional information about the ambient
pressure Pext(l) dependence on l. Indeed, the last VLBI observations
have shown that in most AGN relativistic jets a power-law depen-
dence rjet ∝ lκ with κ = 0.8–1.2 takes place (Pushkarev et al. 2017).
In particular, for jets from M87, observations give rjet ∝ l0.6 (Asada
& Nakamura 2012; Hada 2013; Mertens et al. 2016). On the other
hand, as one can see from Fig. 4, for large enough magnetization
parameters σ M > 103 (or small enough jet width xjet), the dimen-
sionless function h(x) has a power-law dependence as well, i.e. h(x)
∝ x−k where k ≈ 0.9. Using expression (57) for h(x), one can obtain

Pext(l) ∝ l−p, (59)

where p = 2κ(1 + k) ≈ 3–4.
Finally, as one can see from Fig. 4, for small enough magnetiza-

tion parameters σ M < 103, for large jet radii rjet the slope h(x) is not
so steep. This break connects with different regimes, correspond-
ing to magnetically dominated flow at small distances l from the
origin and a saturation regime at larger distances. Indeed, for quasi-
cylindrical jets, the following asymptotic solution for magnetically
dominated flow exists: γ (r) = r/RL (see e.g. Beskin 2009). As, ac-
cording to Zamaninasab et al. (2014), RL ≈ 10 rg ∼ 1014 cm, at large
enough distances l from the ‘central engine’, where the transverse
dimension of the jet rjet reaches 1 pc so that rjet/RL > σ M, the flow
cannot still be magnetically dominated. Diminishing of the particle
acceleration at large distances from the origin was also detected
recently by the Monitoring of Jets in Active galactic nuclei with
VLBA Experiments (MOJAVE) team (Homan et al. 2015). Some
astrophysical applications are considered in Kovalev et al. (personal
communication (in preparation)).
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A P P E N D I X : C U R R E N T C L O S U R E W I D T H

In this Appendix, we show how expression (46) for the current
closure width δr1 can be obtained from elementary considerations.
In the supersonic regime, the force balance equation for r ≈ rjet can
be written as

d

dr

(
B2

ϕ

8π
+ P

)
= 0. (A1)

As one can easily check, this condition corresponds exactly to the
following terms in equation (36):

c2
s

dM2

dr
= 1

2
r2 d�

dr

d�2
F

d�
. (A2)

On the other hand, as was shown above, the characteristic scale of
changing M2 (and hence the pressure P) is similar to the width δr1.
This allows us to write

dP

dr
≈ Pext

(δr1)2
x, (A3)

where x = rjet − r. Now using definition (1) for Bϕ and the supersonic
asymptotic solution

I = 2πcηn�Fr
2
jet

M2
0

(A4)

for current I, we obtain(
δr1

rjet

)2

≈ PextM4
0

2πr4
jetη

2
n(�′)2

, (A5)

where �′ = d�F/dr for r = rjet. Additionally, the definition (22) for
�F results in

(�′)2 = π
�2

0rjet

�tot
B ′

p. (A6)

Now using the leading terms of the Bernoulli equation,

v2

2
≈ �FLn, (A7)

the connection ρextv
′ = ηnB

′
p resulting from definition (3), where

again the primes denote the appropriate derivatives, and also the
clear expression for magnetic flux,

� ≈ �tot − πrjetB
′
px

2, (A8)

and definition (21) for L(�), we finally obtain

B ′
p ≈ 1

2π

�2
0

cη3
n

rjetρ
2
ext. (A9)

Together with (A5) and (A6), this gives us the expression (46) for
δr1.
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