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ABSTRACT
N-body modelling of massive body motion in constant density-cores shows deviations in the
dynamical friction force from Chandrasekhar’s formula. When the body orbit falls within
the core, the body experiences a stage of enhanced friction after which the friction force
becomes very low or zero. This effect takes place for circular as well as radial and elliptic
orbits of the massive perturber. Previously developed perturbative treatment of dynamical
friction in spherical systems cannot be directly applied to constant density cores because of
the importance of non-linear resonant effects in this case. This feature is caused by the full
resonance of the moving body with all the stars in the harmonic potential. There has been a
successful attempt at semi-analytical treatment of the problem, but there remains a lack of any
analytical description of this phenomenon. We study the motion of a massive point-like object
in a strictly constant density sphere analytically and obtain a formula for the energy decay
rate of the object at the stage of super-Chandrasekhar friction. We show that the dynamical
friction force at this stage is half an order in Mobject/Mcore stronger than in Chandrasekhar’s
case. Our numerical simulations for both circular and radial orbits of the perturber reveal the
stage of enhanced friction and the stalling stage afterwards. Dependence of the decay time at
the super-Chandrasekhar stage on the perturber mass confirms our analytical relationship. We
compare our analytical formula with N-body results of other authors for the enhanced friction
stage and find good agreement.
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1 IN T RO D U C T I O N

In his pioneering paper, Chandrasekhar (1943) showed that a heavy
body of mass M moving through an infinite homogeneous and
isotropic medium of non-colliding lighter particles suffers a drag
force. The body deflects trajectories of the background particles
(BPs) by its gravitational field, and its total momentum loss due to
this interaction is given by the formula

M
dV

dt
= −4π G2 M2

V 2
ln �ρ(<V ), (1)

where V is the speed of the object, ρ(<V) is the density of particles
with speeds less than V, and � = pmax/pmin. The quantities pmax

and pmin are the maximum and minimum impact parameters of the
encounters contributing to the drag, respectively. In general pmax ≈
D, where D is the size of the system and pmin ≈ max (Gm/V2, d),
where d is the size of the object and m is the single particle mass (e.g.
White 1976). Generally, this force can also be understood as being
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caused by the gravitational attraction of a density wake, formed
behind the moving body due to the perturbation of the medium by
its own gravitational field (e.g. Mulder 1983).

Dynamical friction plays an important role in astrophysics. It
influences the dynamics of galaxies in clusters, black holes (BHs)
and globular clusters (GCs) motion, galactic bars rotation, etc. It
governs satellite sinking and mass segregation processes in star
clusters and galaxies, and all these phenomena have observational
consequences.

Chandrasekhar’s formula (1) turns out to work remarkably well
in many cases (White 1983; Bontekoe & van Albada 1987; Zaritsky
& White 1988; Cora, Muzzio & Vergne 1997), even beyond the
approximation of the infinite, homogeneous, and isotropic medium
used for its derivation. In particular, it is valid for the motion of
a massive body in inhomogeneous systems with non-Maxwellian
velocity distribution, after appropriate corrections of the Coulomb
logarithm ln � and density expression to account for the density
variation along the massive body trajectory and the influence of stars
moving faster than the perturber (Colpi & Pallavicini 1998; Antonini
& Merritt 2011). Corrected for velocity anisotropy, Chandrasekhar’s
formula can also be applied to aspherical systems (Peñarrubia, Just
& Kroupa 2004).

C© 2015 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 by guest on D
ecem

ber 22, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

mailto:zelnikov@lpi.ru
mailto:dmitry.kuskov@phystech.edu
http://mnras.oxfordjournals.org/


3598 M. I. Zelnikov and D. S. Kuskov

However, it has been found that Chandrasekhar’s formula loses
its validity in constant-density cores. This is all the more interesting
because observations of some galaxies showed that their central
dark-matter cores are of almost constant density (de Blok et al.
2001; Borriello & Salucci 2001; Binney & Evans 2001; Kleyna
et al. 2003).

Goerdt et al. (2006) found that, if a galaxy has a central constant-
density core, then an orbiting satellite ceases sinking and stalls many
dynamical times at the outer boundary of the core. So the dynamical
friction in a constant density core tends to zero, in contradiction to
the expectation of the Chandrasekhar’s formula (1). Having investi-
gated through N-body simulations the sinking of a massive perturber
in cusped distributions with the slope γ not steeper than approxi-
mately 0.5, they also obtain the stalling behaviour of the satellite,
caused by the transformation of the cusp into a constant density core
due to the tidal influence of the sinking perturber. Only cusps steeper
than γ = 0.5 survive, and in this case Chandrasekhar’s formula is
shown to describe the dynamical friction fairly well. So Goerdt
et al. (2006) concluded that the dynamical friction force, while be-
ing well described by the Chandrasekhar formula for cuspy mass
distributions, becomes zero in constant density cores. The authors
believe that this effect is due to orbit-resonant scattering.

More insight into the physics of dynamical friction was provided
by Read et al. (2006), who presented N-body and semi-analytical
consideration of a satellite (GC) sinking into a spherical constant-
density galactic core. The semi-analytical model assumes that the
gravitational potential is purely harmonic, as it should be for strictly
constant density spherical mass distribution. Read et al. (2006) ne-
glected the back reaction of the mean gravitational field on the
perturber and the BPs motion, so the gravitational potential was
considered to be quadratic and fixed during all of the evolution.
In this approximation, under the condition that the perturber orbit
is fixed, and neglecting interactions between BPs themselves, the
equation of motion of each BP can be written in a closed form (equa-
tion 10 in Read et al. 2006). The authors solved numerically this
(non-linear) equation for each BP which allowed the traceing of the
evolution of the density and velocity distribution of these particles.
The authors stated that the results of these semi-analytical calcula-
tions confirm the results of their more accurate N-body simulations.
The N-body model of Read et al. (2006) assumes the initial BP den-
sity distribution to have a plateau at the centre and power-law decay
at large distances. The satellite orbit and gravitational potential are
now live, evolving under the influence of BP motion. Read et al.
(2006) found that sinking satellites experience an initial stage of
very rapid (super-Chandrasekhar) dynamical friction, and a stage
of very small or zero friction afterwards. This is shown to be true
not only for circular satellite orbits, but for elliptical ones as well.
Numerical data of Read et al. (2006) showed that the inspiralling
satellite generally induces a rotating overdense region (‘wake’) of
a scale comparable to the core size. The position of the centre of
mass of the wake and relative phase of its rotation with respect to
the satellite differ at the super-Chandrasekhar and stalling stages.

The essential statements of Read et al. (2006) about the physics
of dynamical friction in constant density cores could be expressed
as follows: (1) all BPs are in resonance with a massive satellite,
if we neglect the back influence of the background perturbation to
the satellite; (2) this resonant interaction results in the motion of
BPs on stable epicycles about the perturber; (3) there is no time-
averaged energy and momentum transfer between the satellite and
BPs in equilibrium, and this is a reason for the very small fric-
tion of the satellite at the last stage; (4) when the satellite nears
the constant-density core, a rearrangement of BP distribution from

one equilibrium state to another results in the super-Chandrasekhar
dynamical friction.

Goerdt et al. (2010) performed N-body modelling of a massive
satellite sinking into cuspy backgrounds for a set of cusp slopes in
the range γ = 0.5–1.75 and satellite masses from 105 to 5 × 107

solar masses. They found that the sinking satellite tidally transforms
the cusp into a constant-density core and then stalls at the outer
edge of this newly created core. Goerdt et al. (2010) showed that
for circular and slightly eccentric orbits the satellite experiences a
stage of enhanced friction, then after a small ‘kickback’ the satellite
sinking stops. Goerdt et al. (2010) did not model a satellite sinking
into a core that is of constant density from the very beginning. In
their models, such cores are formed from a cuspy background only
during the stage of enhanced friction. When the core formation is
finished, the dynamical friction disappears. It should be noted that
at the stage of zero friction the modelling shows satellite energy
fluctuations near its mean value. This may be a result of the core-
satellite system oscillations just after the core formation, or may be
for other reasons. Goerdt et al. (2010) found that the mass of the
core formed is of the order of the mass of the initial background,
enclosed inside a tidal radius, so more massive satellites generates
larger cores. The core is smaller as the initial cusp becomes steeper.

It is known that after supermassive BH binary merging the
newly formed BH can obtain a significant recoil velocity due to
an anisotropic emission of gravitational waves (Campanelli et al.
2007; Gonz’alez et al. 2007; Tichy & Marronetti 2007). Gualan-
dris & Merritt (2008) have numerically analysed the motion of a
supermassive BH kicked out of the centre of a galaxy core with
ρ ∝ r−γ , γ = 0.55 initial density profile at the centre. It was shown
(see section 4 of Gualandris & Merritt 2008) that such shallow cusp
easily transforms by moving BH into almost constant-density core.
If the kick velocity is large enough to remove the BH from the
core, the BH starts radial oscillations with decreasing amplitude.
The authors noted that in this case moving BH also generates a
wake. However, in contrast to the case of the circular motion of the
perturber discussed in Goerdt et al. (2006), Read et al. (2006), and
Goerdt et al. (2010), the wake of a radially oscillating BH never
has a chance to reach a steady-state form because the position and
velocity of the BH change drastically during one crossing time. As
one can conclude, the wake also oscillates and changes its form (see
e.g. fig. 9 of Gualandris & Merritt 2008). For sufficiently large kick
velocities, Gualandris & Merritt (2008) have found three stages of
the BH motion: after a stage with Chandrasekhar friction (I) there
follows a stage with very low (sub-Chandrasekhar) friction (II),
and eventually the BH reaches thermal equilibrium with the stars
(III). Numerical data of Gualandris & Merritt (2008, Figs 3 and 6
of this paper) reveal a prominent ‘knee’ in the energy dependence
of the BH between stages I and II, which means a quick (super-
Chandrasekhar) deceleration at the end of the first Chandrasekhar
stage. However, they did not single out this period of enhanced
friction and did not investigate it.

Analogous results for a constant-density core galaxy have been
obtained by Read et al. (2006) and Inoue (2011). In their numer-
ical calculations, they have shown that after a stage with super-
Chandrasekhar friction there comes a stage with almost no friction.

Comparing N-body results of Gualandris & Merritt (2008),
Goerdt et al. (2006), Read et al. (2006), and Goerdt et al. (2010),
we see that, in constant-density cores, a massive perturber runs
qualitatively through the same stages of motion – Chandrasekhar,
super-Chandrasekhar, sub-Chandrasekhar – no matter whether its
orbit is circular, elliptical, or radial. As we shall argue, this similar-
ity is not fortuitous and reveals the common physics of dynamical
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friction in constant-density cores, whereas inhomogeneities, in-
duced by circular and radially moving perturbers are apparently
quite dissimilar.

There have been a number of attempts to understand the cause
of non-Chandrasekhar dynamical friction and to generalize Chan-
drasekhar’s formula to the case of constant density cores. Kalnajs
(1972) has computed dynamical friction in a uniformly rotating disc
of stars analytically and has demonstrated that owing to collective
effects in this self-gravitating disc the dynamical friction in this
system disappears. In order to get further insight into the physics
of dynamical friction phenomena gravitationally bound mass dis-
tributions, Tremaine & Weinberg (1984) and Weinberg (1986) for-
mulated a perturbative theory of dynamical friction in spherical
systems. They considered the circular motion of a massive body
in a galaxy with generic spherical potential. Tremaine & Weinberg
(1984) have shown that dynamical friction, exerted on a body ro-
tating in a spherical galaxy, is caused mostly by stars that are in
resonance with the body, i.e. moving with the same (or a commen-
surable) period. As the rotational frequency of the body changes
due to dynamical friction, the body gradually passes through reso-
nances with different groups of stars. Tremaine & Weinberg (1984)
discovered that the character of the star’s response to the pertur-
bation depends on a dimensionless parameter that has a sense of
the speed of the transition through resonances. For a fast passage
through resonances the dynamical friction is given by formula (93)
in Tremaine & Weinberg (1984), which is an analogue of Lynden-
Bell & Kalnajs (1972) formula and can be considered as a general-
ization of Chandrasekhar’s formula for a spherical system. For slow
resonance passage in a spherical star systems, the energy exchange
between the perturber of mass M and a BP is shown to be reversible
(‘dynamical feedback’) and O(M1/2) stronger, than the Lynden-Bell
and Kalnajs formula (which is analogous to and of the same order
as Chandrasekhar’s friction).

Following Tremaine & Weinberg (1984) and Weinberg (1986),
most researchers recognize the clue role of resonant interaction for
dynamical friction in spherical systems in general. However, there
is no agreement so far about the cause of the enhanced friction and
friction damping in constant-density cores. Read et al. (2006) be-
lieve that the main cause of a satellite stalling in a constant-density
core is that the BPs reaches equilibrium, when they all move along
stable epicycles about the satellite with no mean energy and angular
momentum transfer to the satellite. The authors observe very low
sub-Chandrasekhar exponential decay of the satellite orbit radius in
N-body modelling. They suppose this decay to be a consequence of
a spurious orbital plane precession due to numerical noise. Gualan-
dris & Merritt (2008) also observe a stage of very low dynamical
friction when a radially moving BH sinks into a constant density
core (phase II in Gualandris & Merritt 2008). They put forward a
hypothesis that the slower damping in this phase is explained by
perturbations from individual stars, some of which can accelerate
the BH. However, Gualandris & Merritt (2008) do not insist on
the explanation of their phase II due to discreteness effects and
state that they do not understand the mechanism(s) responsible for
the orbital damping in phase II (p. 790 in Gualandris & Merritt
2008). Another point of disagreement is the moment of the onset of
stalling. Gualandris & Merritt (2008) argue that the stalling phase
begins when the stellar mass interior to the BH orbit is roughly
equal to the BH mass (Gualandris & Merritt 2008, section 3.4).
Read et al. (2006) note, based on their simulations, that ‘the core
stalling behaviour is a special property of the harmonic core and
not to do with the enclosed mass’ (Read et al. 2006, section 4.3). A
short stage of enhanced dynamical friction before the stalling stage,

which can be seen in almost all numerical simulations, has attracted
much less attention from researchers. Read et al. (2006) explain
super-Chandrasekhar friction by the equilibrium-orbit transforma-
tion. When a satellite nears the constant-density core, stars transit
from one set of equilibrium epicycles to the other. This process
results in quick energy exchange of the stars with the satellite dur-
ing approxymately one dynamical time (Read et al. 2006, section
2.2). While having obtained a rather plausible qualitative explana-
tion for the enhanced friction, Read et al. (2006) have not obtained
an analytical formula for super-Chandrasekhar dynamical friction
force. Some phenomena observed in N-body modelling remain with
out any explanation at all. These are stochastic fluctuations of the
massive perturber energy at the stalling stage, when its energy is
still much greater than the Brownian value (Gualandris & Merritt
2008, fig. 6), and there is evidence of additional frequencies (a kind
of beating) at this stage, which can lead to a temporal increase in
the perturber energy (Gualandris & Merritt 2008, section 3.4). This
observation of Gualandris & Merritt (2008) is very similar to the
‘kickback’ phenomenon just after the stage of enhanced friction,
reported by Goerdt et al. (2010).

In this paper, we try to clarify the physics underlying non-
Chandrasekhar dynamical friction in constant-density cores and
in initially slightly cuspy distributions, where the massive perturber
itself is shown to generate a constant-density core (Goerdt et al.
2010). The main feature of constant-density cores is a nearly har-
monic potential at the centre. The period of the unperturbed motion
in a purely harmonic potential does not depend on energy and angu-
lar momentum, and is the same for all BPs and the perturber. This
leads to the resonance of all of the BPs in the core with the massive
perturber.

To investigate analytically the interaction of a massive perturber
with BPs in constant-density cores, we consider an idealized model
of an exactly constant density sphere, surrounded by a vacuum.
Without perturbations, the gravitational potential inside the sphere
is exactly harmonic, and BPs and the perturber are all in full reso-
nance. In terms of the perturbation theory developed by Tremaine &
Weinberg (1984) and Weinberg (1986), this situation corresponds
to ‘very slow’ passing through resonances. So we expect to observe
a kind of ‘dynamical feedback” of the type modeled by Tremaine
& Weinberg (1984). This term means reversible transfer of energy
and/or angular momentum from the perturber to BPs. The main
differences with the model of Tremaine & Weinberg (1984) are the
following: (1) the number of BPs which are in resonance with the
perturber at a given time is not infinitesimal, but finite and large.
So the back reaction of BPs on the perturber motion is very sig-
nificant, (2) permanent resonance forces many BPs to enter into
a non-linear mode of evolution, and perturbative treatment of BP
motion of Tremaine & Weinberg (1984) becomes non-applicable.
To solve this problem, non-linear evolution of the particles under
the influence of the perturber gravitational field is necessary.

Here we analyse the motion of particles in the harmonic poten-
tial under the influence of the Newtonian gravitational field of a
point-like massive perturber. As we neglect the back reaction of
BPs on the mean potential and consider the perturber orbit to be
fixed in zero approximation, the BP equations of motion can be
written in a closed form. Read et al. (2006) have previously con-
sidered this model and have solved these non-linear equations of
motion for each BP numerically, to obtain the evolution of the per-
turber and BP distribution, which are reported to be consistent with
direct N-body results. Our goal is to obtain approximate analyti-
cal solutions to these equations, which will allow us to shed more
light on the physics of dynamical feedback in constant density cores
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and to derive a formula for the perturber energy loss at the super-
Chandrasekhar stage. We check our analytical results by numerical
solution of the BP equations of motion.

The plan of the paper is as follows. In Section 2, we obtain
the analytical formula for the frictional force in a constant density
sphere. In Section 3, we present the results of numerical simulations
and compare them with the analytical results for the first stage of
quick energy decay. In Section 4, we discuss features of two more
stages after the stage of super-Chandrasekhar friction. At the second
stage, the energy of the perturber starts to grow. At the third stage, its
energy fluctuates about an approximately constant average value.
Section 4.6 contains the discussion of our results in comparison
with previous investigations and our conclusions. In the Appendix,
we present the derivation of equation (1) to test the method, that
is applied to derive the dynamical friction in a constant density
spherical star distribution.

2 A NA LY T I C A L R E S U LT S

2.1 Model

In order to obtain not only numerical, but also analytical results,
we have chosen one of the simplest examples of a highly bound
system which is the constant density sphere. This system is a rea-
sonable approximation of real galaxy cores without cusps and has
the advantage of analytical solvability. From here on, we refer to the
constant density sphere as a galaxy, the BPs as stars and the massive
perturber as a BH. However, our results can be equally applied to
dark matter particles as the background and to a GC or a galactic
bar as the perturber. Orbits of stars in this model are ellipses, all
stars have the same period

T =
√

3π

Gρ
, (2)

where ρ is the stellar density Binney & Tremaine (1950). Hence,
the stars interact with the BH in a resonant way. This permanent res-
onant interaction between the BH and the stars is the key difference
of our model from that of Chandrasekhar.

We used ρ = 5.31 × 106 M� kpc−3, thus ω = 2π/T = 10 Gyr−1.
Galaxy radius is 1 kpc and mass is Mg = 2.22 × 107 M�.

In our model, we put a massive BH (with mass M ≈ 10−3Mg)
into the constant density sphere of stars. Without the BH, the stars
form the quadratic gravitational potential

� = 1

2
ω2r2, ω2 = 4

3
πGρ. (3)

The trajectories of the stars in this potential are ellipses with the
centres at the centre of the potential:

r = r0 cos(ωt) + (v0/ω) sin(ωt). (4)

Without dynamical friction, the BH in the galaxy would have the
same trajectory. However, the interaction between a star and the
BH changes the trajectories of both bodies. The change of the star
trajectories leads to a change in their distribution. We assume that
this change in distribution only affects the motion of the BH, and
negligibly affects the stars. Thus, we take into consideration only
star–BH interactions and neglect star–star interactions, except those
of the interaction through the mean gravitational field of the stars.

As we assume that stars always move in quadratic potential, we
need, for consistency, to choose the initial star distribution so that

the density is constant in space and time in the absence of the BH.
The corresponding distribution is

f (r, v) = ρ

π2ω2R
√

[r × v]2 − ω2R2r2 − R2v2 + ω2R4
, (5)

where R is the ‘radius’ of the galaxy. Integrated over the range of
definition, it gives the galaxy mass Mg = 4

3 πρR3.
To get some analytical results, we assume that the BH in zero-

order approximation moves with constant energy, just as in Chan-
drasekhar’s formula derivation. Hence, the trajectory of the BH is
only determined by the galaxy initial potential, and the initial ve-
locity and position of the BH. Then we calculate, how much energy
is transmitted into stars, and thus we obtain, how quickly the BH
loses its energy. The influence of the energy loss on the BH orbit is
taken into account afterwards.

2.2 Stellar trajectories

For the chosen system, the unperturbed Hamiltonian is

H = p2

2 m
+ mω2r2

2
, (6)

and the perturbation is

V = −GmM/|r − R|. (7)

As we assumed that the BH moves in stellar potential only, its
trajectory is

R = R0 cos(ωt) + P0

Mω
sin(ωt). (8)

The unperturbed trajectory of a star is

r = r0 cos(ωt) + p0

mω
sin(ωt)

p = p0 cos(ωt) − mr0ω sin(ωt). (9)

Putting equation (9) into equations (A2) and (A3) (see the Ap-
pendix), taking into account equations (7) and (8), we obtain

cos(ωt)ṙ0 + sin(ωt)
ṗ0

mω
= 0

−mω sin(ωt)ṙ0 + cos(ωt) ṗ0 = GMm
∂

∂r
1

|r − R| , (10)

which can be rewritten in the form

ȧ = α
∂

∂b
1

|a cos(ωt) + b sin(ωt)|

ḃ = −α
∂

∂a
1

|a cos(ωt) + b sin(ωt)| . (11)

Here,

α = GM/ω, (12)

a = r0 − R0,

b = p0

mω
− P0

Mω
(13)

are the relative position and normalized velocity of the star in the
reference frame of the BH, respectively.

This is a Hamiltonian system with a time-dependent Hamilto-
nian. Let us assume that during the dynamical time the influence
of the BH on the star is small. This is valid for most particles
except of those experiencing close encounters with the BH. Their
influence is negligible in our model. In this case, we can simplify
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equation (11) by averaging the Hamiltonian and its arguments over
a stellar period. The Averaged Hamiltonian is

I (a, b) = α

2π

∫ 2π

0

dζ

|a cos(ζ ) + b sin(ζ )| . (14)

As a result, we get a classical Hamiltonian system with time-
independent Hamiltonian I:

ȧ = ∂I

∂b
; ḃ = −∂I

∂a
. (15)

As a basic property of such a system, we know that I is constant
in time. Also from equation (11), it can easily be derived that the
angular momentum in this frame

L = [a × b] (16)

is also constant.
Conservation of L leads to the fact that the star’s orbit is planar.

We choose the plane Oxy so that Ox, Oy and L form a right-hand
triple and choose new elliptic variables: q is the major semi-axis,
n is the minor semi-axis of the ellipse, θ is the angle between the
major semi-axis and Ox and ϕ is the angle between the radius vector
and the major semi-axis. Thus,

a =
(

q cos θ cos ϕ − n sin θ sin ϕ

q sin θ cos ϕ + n cos θ sin ϕ

)

b =
( −q cos θ sin ϕ − n sin θ cos ϕ

−q sin θ sin ϕ + n cos θ cos ϕ

)
,

(17)

L = Lz = [a × b]z = qn (18)

and

I = α

2π

∫ 2π

0

dζ√
q2 cos2(ζ ) + n2 sin2(ζ )

= 2α

π

1

q
K

(
1 − n2

q2

)
,

(19)

where K(x) is the elliptic integral of the first kind. Conservation of
I(q, n), L(q, n) leads to conservation of q and n, and therefore to
conservation of

E = a2 + b2

2
= q2 + n2

2
. (20)

In these new variables

∂I

∂a
= ∂I

∂q2

∂q2

∂a
+ ∂I

∂n2

∂n2

∂a

=
(

∂I

∂q2
+ ∂I

∂n2

)
∂E

∂a
+

(
∂I

∂q2
− ∂I

∂n2

)
∂
√

E2 − L2

∂a

=
(

∂I

∂q2
+ ∂I

∂n2
+

(
∂I

∂q2
− ∂I

∂n2

)
E√

E2 − L2

)
a

+
(

∂I

∂q2
− ∂I

∂n2

)
L√

E2 − L2
b⊥, (21)

where b⊥ =
(

by

−bx

)
. As E, L, I, q and n conserve,

∂I

∂a
= �2a − �1b⊥. (22)

Similarly

∂I

∂b
= �2b + �1a⊥, (23)

where a⊥ =
(

ay

−ax

)
and

�1 = −
(

∂I

∂q2
− ∂I

∂n2

)
L√

E2 − L2
,

�2 = ∂I

∂q2
+ ∂I

∂n2
+

(
∂I

∂q2
− ∂I

∂n2

)
E√

E2 − L2
. (24)

As

K′(x) = E(x) − (1 − x)K(x)

2(1 − x)x
, (25)

where E(x) is the complete elliptic integral, we can write

∂I

∂q2
+ ∂I

∂n2
= − α

πq2n2
nE

(
1 − q2

n2

)
,

∂I

∂q2
− ∂I

∂n2
= α

π(q2 − n2)

×
((

1

q2
+ 1

n2

)
nE

(
1 − q2

n2

)
− 2

1

n
K

(
1 − q2

n2

))
. (26)

Equations (15) in these new variables (equation 17) take the
form:

q̇ = ṅ = 0,

θ̇ = �1,

ϕ̇ = �2. (27)

Thus we see that physically orbit averaging in equation (14) is
equivalent to the replacement of the true star orbits by precessing
ellipses.

Integrating these equations and returning back to the initial vari-
ables, we obtain:

a(t) = O2(t)(a0 cos(�2t) + b0 sin(�2t))

b(t) = O2(t)(−a0 sin(�2t) + b0 cos(�2t)), (28)

where

a0 = r(0) − R(0)

b0 = 1

mω
p(0) − 1

Mω
P(0), (29)

and O2(t) is a 2D rotation matrix:

O2(t) =
(

cos(�1t) − sin(�1t)

sin(�1t) cos(�1t)

)
. (30)

To rewrite these equations for an arbitrary orbit plane, we need to
replace the matrix O2(t) with the 3D rotational matrix O(t) on the
angle θ = �1t around n = L/L (equation A19).

Therefore, the star trajectory is

r(t) = O(t)(a0 cos(ω′t) + b0 sin(ω′t)) + R(t)

p(t) = mωO(t)(−a0 sin(ω′t) + b0 cos(ω′t)) + m

M
P(t), (31)

where

ω′ = ω + �2. (32)

Equation (31) reveals how stellar trajectories change under the
influence of the BH. First of all, stellar orbital frequencies are
changed, and they are not the same as that of the BH.
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Secondly, rotational matrix O(t) causes a slow precession of the
star’s orbit with the frequency �1.

As we see, the star orbits are indeed stable epicycles in the BH
frame of reference, as it has been stated by Read et al. (2006). The
orbit is characterized by two more frequencies �1 and �2. They
are both typically much less than the dynamical frequency ω: �1 ∼
�2 ∼ M

Mg
ω ∼ 10−3ω. Physically �1 determines the frequency of the

orbit pericentre precession in the BH reference frame. It determines
the evolution of the BH wake shape and position and thus governs
the energy flux from the BH to stars. �2 gives a small drift of the
star orbital phase. After averaging over star distribution, this phase
drift does not influence the net energy flux.

Having obtained the star trajectory (equation 31) we are able to
study the energy exchange between the BH and the stars.

2.3 Energy exchange

The dependence of the stellar energy e = p2

2m
+ mω2r2

2 on time can
be derived directly from equation (31):

e(t) = e(0)

+ mω2R2
0(1 − cos ϕr cos(�2t)) − m(ωr0 · ωR0)

+ m((ωr0 cos(�2t) + v0 sin(�2t)) · O(t)ωR0)

+ mV 2
0 (1 − cos ϕv cos(�2t)) − m(v0 · V 0)

+ m((v0 cos(�2t) − ωr0 sin(�2t)) · O(t)V 0), (33)

where

cos ϕi = cos2 γi + sin2 γi cos(�1t), (34)

γ r is the angle between R0 and L = [a0 × b0], γ v is the angle
between V 0 and L, and V 0 = P(0)/M . We have neglected the
potential energy of star–BH interaction, because we assume it to be
much less than the star-galaxy one.

Energy transfer from the BH to a single star is therefore defined
as

ė(t) = m�2ω
2R2

0 cos ϕr sin(�2t) + m�2V
2

0 cos ϕv sin(�2t)

+ m�1ω
2R2

0 sin2 γr sin(�1t) cos(�2t)

+ m�1V
2

0 sin2 γv sin(�1t) cos(�2t)

+ m((ωr0 cos(�2t) + v0 sin(�2t)) · Ȯ(t)ωR0)

+ m((v0 cos(�2t) − ωr0 sin(�2t)) · Ȯ(t)V 0)

+ m�2((v0 cos(�2t) − ωr0 sin(�2t)) · O(t)ωR0)

+ m�2((ωr0 cos(�2t) + v0 sin(�2t)) · O(t)V 0). (35)

The total energy loss of the BH is the sum of energies transmitted
from the BH to every star. If we replace the sum by the integral over
the phase space, we get

Ėbh(t) = −ρ

∫
{�2ω

2R2
0 cos ϕr sin(�2t)

+ �2V
2

0 cos ϕv sin(�2t)

+ �1ω
2R2

0 sin2 γr sin(�1t) cos(�2t)

+ �1V
2

0 sin2 γv sin(�1t) cos(�2t)

+ ((ωr0 cos(�2t) + v0 sin(�2t)) · Ȯ(t)ωR0)

+ ((v0 cos(�2t) − ωr0 sin(�2t)) · Ȯ(t)V 0)

Figure 1. The BH energy loss according to the Monte Carlo integration for:
not simplified equation (36), simplified equation (42) and equation with sine
expanded into series (47) for |X1| = |X2| = 1/

√
2, X1 ⊥ X2. This shows

that assumptions made to derive the resulting formula (47) are correct.
Mg = 103, M = 1, ω = 1, Rg = 1.

+ �2((v0 cos(�2t) − ωr0 sin(�2t)) · O(t)ωR0)

+ �2((ωr0 cos(�2t) + v0 sin(�2t)) · O(t)V 0)}
× f (r, v)d3rd3v. (36)

As we consider the motion averaged over the orbital period, the
orbital phase distribution can be considered to be uniform. This
means that equation (36) cannot depend on the orbital phase shift
�2t. Neglecting the phase shift by assuming �2 = 0, we can simplify
this equation as follows:

Ėbh(t) = −ρ

∫
{�1ω

2R2
0 sin2 γr sin(�1t)

+ �1V
2

0 sin2 γv sin(�1t) + ω2(r0 · Ȯ(t)R0)

+ (v0 · Ȯ(t)V 0)}f (r, v)d3rd3v. (37)

The integral in this equation consists of two parts, proportional
to sin �1t (let us denote it as Ėbh,sin(t)) and to cos �1t:

Ėbh(t) = Ėbh,sin(t) + ρ

∫
[ω2(r · [R0 × n]) + (v · [V 0 × n])]

× cos(�1t)f (r, v)d3rd3v. (38)

As the trajectory is averaged over the period (equation 14), we
can move the stars and the BH forward in a quarter of a period.
This changes R0 → V 0/ω, V 0 → −ωR0, r → v/ω, v → −ωr .
But due to symmetry, we can change R0 → −R0, V 0 → −V 0,
r → −r , v → −v. These two changes invert the sign of the second
term, but this does not change the result. Therefore, the second term
in equation (38) is zero. A similar argument is valid for any chosen
�2t value.

These simplifications are confirmed by numerical calculations
(see Fig. 1). Then we have:

Ėbh(t) = −ρ

∫
�1[V 2

0 sin2 γv + (v0 · n)(V0 · n)

− (v0 · V0) + ω2(R2
0 sin2 γr + (r0 · n)(R0 · n) − (r0 · R0))]

× sin(�1t)f (r, v)d3rd3v, (39)
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where n = L/L, L = [a × b], or, finally,

Ėbh(t) = ρ

∫
�1{([V0 − v0 × n] · [V0 × n]

+ ω2([R0 − r0 × n] · [R0 × n])) sin(�1t)f (r, v)}d3rd3v.

(40)

To explore the dependence of this result on system parameters,
we convert this equation to the dimensionless form. Let the radius
of the galaxy be Rg, then

r = Rgx1

v = Rgωx2

R0 = Rg X1

V0 = RgωX2

f (x1, x2)d3x1d3x2 = f (Rgx1, Rgωx2)

4/3πR3
g

d3rd3v, (41)

so the transmitted energy is

Ėbh(t) = MgR
2
gω

2
∫

{�1([X1 − x1 × n] · [X1 × n])

+ ([X2 − x2 × n] · [X2 × n])} sin(�1t)f (x1, x2)

d3x1d3x2, (42)

and

�1 = −ω
M

Mg

2 q ′n′

π(q ′2 − n′2)2

×
((

1

q ′2 + 1

n′2

)
n′E

(
1− q ′2

n′2

)
− 2

1

n′ K
(

1− q ′2

n′2

))
, (43)

where

q = Rgq
′

n = Rgn
′, (44)

and

M

Mg
= GM

4
3 πGρR3

g

= GM

ω2R3
g

= α

R3
gω

. (45)

Thus,

�1 = −ω
M

Mg
Q(q ′, n′), (46)

where Q(q′, n′) is a dimensionless function. This function is singular
in q′ = 0, n′ = 0 (which corresponds to the close interactions
between a star and the BH) or q′ = n′, but it is nearly of the order
of 1 for average q′ and n′ in our system. In our model the value of
M/Mg is about 10−3. Therefore, �1 is about 10−3ω for most stars.
This is a slow frequency of star trajectory change. Therefore for
times t � Mg

M
T , where T is the orbital period, the sine in equation

(42) can be replaced by the Taylor series. As shown further, if the
initial velocity of the BH is about the escape velocity1 of the galaxy
and E0 is about R2

gω
2, the time required for the BH to lose all of its

energy is about the same value.

1 Here and after we use the term ‘escape velocity’ for the velocity of the BH
required to reach the border of the galaxy from the centre, not the velocity
required to reach infinity. So Vesc = ωRg.

Fig. 1, shows the results of Monte Carlo integration for equations
(36) and (42) and equation:

Ėbh(t) = R2
g M2ω4t

Mg

∫ ′
{([X1 − x1 × n] · [X1 × n])

+ ([X2 − x2 × n] · [X2 × n])}Q2(q ′, n′)

×f (x1, x2)d3x1d3x2, (47)

where ′ over the integral means that the regions where Q(q′, n′) �
1 are excluded from the integration. The integral depends only on
X1 and X2, so we can write:

Ėbh(t) = −R2
g M2ω4t

Mg
F (X1, X2). (48)

As Ebh = MV 2
0 /2 + Mω2R2

0/2 = MR2
gω

2
(
X2

1 + X2
2

)
/2,

Ėbh(t)

Ebh
= −2

M

Mg

F (X1, X2)

X2
1 + X2

2

ω2t . (49)

Results of Monte Carlo calculations of the dimensionless expres-
sion

F (X1, X2)

X2
1 + X2

2

, (50)

shown in Fig. 2, reveal that this value has very small variations and
can be replaced by a constant C:

F (X1, X2)

X2
1 + X2

2

≈ C ≈ 2. (51)

Precise value of C depends almost logarithmically on the value of
�′

1max. In our calculations, we used �′
1 < 3. Below we show that

the value C ≈ 2 is consistent with numerical calculations.
So we have

Ėbh(t)

Ebh
= −2C

M

Mg
ω2t . (52)

and

Ebh(t) = E0 exp

[
−C

M

Mg
ω2t2

]
. (53)

This integration is valid assuming that the energy of the BH changes
more slowly than star–BH interaction is established which is proved
by numerical calculations.

One of the most interesting consequences of this equation is that
for the same initial velocity (relative to the escape velocity) the BH
loses its energy in

N ∝ √
Mg/M (54)

oscillations.
So we obtain that in a constant density core the dynamical fric-

tion force due to resonant interaction with stars is (M/Mg)−1/2

times stronger than the usual Chandrasekhar friction, caused by
pair encounters. The same difference by the factor (M/Mg)−1/2

was obtained by Tremaine & Weinberg (1984, in their section 3.3)
between usual friction and ‘dynamical feedback’. Hence, we can
believe that super-Chandrasekhar friction is the same phenomenon
as the ‘dynamical feedback’ of Tremaine & Weinberg, connected
with the slow passage of a massive satellite through resonance with
stars. Indeed, in our model with harmonic potential all stars of this
constant density core are in permanent resonance with the BH.
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3604 M. I. Zelnikov and D. S. Kuskov

Figure 2. Expression (50) calculated for different X1 and X2. The results are Monte Carlo integrations with distribution (5) over 107 stars. This shows that
there is almost no dependence of BH’s energy decay on its initial position R0 = Rg X1 and velocity V 0 = ωRg X1. The total deviation from the constant is
less than 10 per cent.

Figure 3. Numerical simulations from Read et al. (2006) as compared with
our theoretical fit. Caption of fig. 3 from the paper of Read et al. (2006): ‘The
decay of the radius of the GC as a function of time for a GC on a circular
(straight solid line) and elliptical (oscillating solid line) orbit.’ Dotted lines
are Chandrasekhar’s estimates. Coloured lines are our analytical fits of the
super-Chandrasekhar phase with equation (55).

This result can be compared with the numerical calculations of
Read et al. (2006). The amplitude of the GC oscillation in this paper
can be fitted with our formula

rbh,max(t) = r0 exp

[
−1

2
C

M

Mg
ω2t2

]
. (55)

We fit only the non-Chandrasekhar phase of the radius decay func-
tion of the GC. The results are shown in Fig. 3. The numerical factor

Figure 4. Numerical simulations from Read et al. (2006) as compared with
our theoretical fit. Caption of fig. 5 from the paper of Read et al. (2006): ‘The
decay rate of the GC as a function of Mc...’. Bold solid are experimental lines
from the paper, bold dotted lines are their Chandrasekhar fit and coloured
lines are our analytical fits of the super-Chandrasekhar phase with equation
(55).

in the exponent corresponds to the ratio M/Mg about 0.5 × 10−4

and 1.5 × 10−4. The exact value from the paper of Read et al. (2006)
is M/Mg = 10−4. In Fig. 4 there are fits for simulations of Read
et al. (2006) for various GC masses. Fig. 5 shows a similar sim-
ulation of Goerdt et al. (2006) compared with our analytical data.
Fig. 6 shows a comparison with the simulation of Gualandris &
Merritt (2008)
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Dynamical friction in a homogeneous globe 3605

Figure 5. Numerical simulations from Goerdt et al. (2006) as com-
pared with our theoretical fit. Caption of fig. 2 from the paper of Go-
erdt et al. (2006): ‘Radial distance of the single globular cluster from
the centre of its host halo as a function of time. We start the calcula-
tions with the globular at different initial radii for clarity. Solid curves are
the analytic estimates, dashed curves are from the numerical simulations.’
Coloured lines are our analytical fits of the super-Chandrasekhar phase with
equation (55).

3 N U M E R I C A L C A L C U L AT I O N

To check our analytical formula (53) for super-Chandrasekhar dy-
namical friction we use not the usual N-body simulation but a kind
of a simplified numerical calculation.

3.1 Calculation algorithm

The model of numerical calculation was chosen to be close to the
analytical one. The spherical field was filled with stars of the same
mass according to distribution (equation 5). The BH was put in the
centre of this sphere with an initial velocity equal to or less than the
escape velocity. To simplify the calculation, star–star interactions
were replaced by the interaction with the mean star potential, which
was considered to be stationary, hailed and equal to equation (3).
This reduces the difficulty of the calculation from O(N2) to O(N).
During the calculation, the integration step was chosen to provide a
relative error of 10−5 at every step. When a star get too close to the
BH so that the integration step becomes smaller than 10−10, then the
galaxy potential was ignored and the star was moved analytically
relative to the BH using Kepler’s orbit (Bate, Mueller & White
1971). This algorithm has also been previously applied by Lezhnin
& Chernjagin (2014).

The absence of the effects produced by numerical errors was
checked by test calculations with better precision. A number of
calculations were completed using three different initial steps, each
five times smaller than the other and the calculation results showed
no dependence on the integration step.

The initial star distribution was generated using Monte Carlo
method according to equation (5). After the initial distribution

Figure 6. Numerical simulations from Gualandris & Merritt (2008) as
compared with our theoretical fit. Bold coloured lines are our analytical
fits of the super-Chandrasekhar phase with equation (55) according to BH
masses described in the paper.
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3606 M. I. Zelnikov and D. S. Kuskov

Figure 7. Evolution of the BH’s kinetic energy. M = 10−3Mg, mstar =
10−6Mg.

was generated, some stars were replaced to ensure the following
conditions:

mω
∣∣∣∑ r0

∣∣∣ < 10−3MV0∣∣∣m∑
v0 + MV0

∣∣∣ < 10−3MV0

mω
∣∣∣∑[r0 × v0]

∣∣∣ < 10−3MV 2
0 . (56)

These conditions are required to avoid additional artificial oscil-
lation and rotation of the BH due to discrete effects in a system
without such a large number of stars. The problem is that a random
distribution of the given number of stars (105–106) has its centre of
mass at Rc ∼ Rg/

√
N on average, while the potential is ‘pinned’ at

zero-point. In addition, non-zero random net angular momentum of
the stars can cause artificial rotation of the BH.

After all, the BH was placed in the middle of the galaxy with
initial speed V0.

As a result, this model has three parameters: initial velocity of
the BH, the galaxy mass and the star mass. BH mass is taken as 1.
Time is normalized so that ω = 1.

3.2 Results of the calculation

Calculations were made for various BH masses, initial velocities,
and star masses. As an example, Fig. 7 shows the dependence of
the kinetic energy2 of the bh on time for M = 10−3Mg, m = 10−6Mg

and V0 = Vesc.
The motion of the BH can be divided into three phases: the first

is fairly rapid damping, the second is symmetric rapid acceleration
and the third is oscillations with almost constant average amplitude.

The first phase is well described by equation (53). In Fig. 8, you
can see the first phase of motion for various initial conditions and
the results, predicted by equation (53). The value of C used for
fitting is represented in the figure. Fig. 9 shows the time needed
for the BH to lower its energy down to 0.02 of the initial value
as a function of the its mass. We see excellent agreement with the
analytical formula (54).

The first phase ends when the energy of the BH reaches approx-
imately the Brownian energy.

2 BH’s energy in this section is always normalized to the value of MRgω
2.

4 D I S C U S S I O N O F T H E R E S U LT S

4.1 Initial time dependence

In Chandrasekhar’s case, the motion of the BH is stationary, so the
wake mass and the friction not depend on time. In our model at the
beginning the wake is absent, and the friction is zero. Oscillations
of the BH leads to the formation of a wake, oscillating with the
same frequency in antiphase with the BH. Its mass grows linearly
(see Fig. 10), giving rise to the time dependence of the right-hand
side of equation (52).

4.2 Super-Chandrasekhar’s friction

Adapting Chandrasekhar’s formula (1) to our model and taking
ρ(<V ) = ρ V 3

ω3R3
g
, we have

dV

dt
= −3 ln �

M

Mg
ωV , (57)

or, integrating and assuming C = −6 ln �, we get

Ebh(t) = E0 exp

[
−C

M

Mg
ωt

]
. (58)

This equation means that typical time of Chandrasekhar’s energy
decay would be

T ≈ Mg

M
ω−1. (59)

In our model, the typical time is

T ≈
√

Mg

M
ω−1. (60)

So, in a constant density core the energy decay of the BH is half an
order in the BH mass faster than in Chandrasekhar’s formula. This
is the result of all stars being resonant to the BH.

In her paper, Colpi (1998) describes the motion of a satellite,
orbiting the spherical galaxy with quadratic potential. Her analytical
results applied to the particular case of the satellite and stars moving
with the same period as shown in equation (60) a power dependence
of the damping time on the satellite mass with power 0.5 (or 0.4
numerically).

A short super-Chandrasekhar phase can also be distinguished
between Chandrasekhar and sub-Chandrasekhar stages in the paper
of Gualandris & Merritt (2008), but the authors do not pay much
attention to it.

It should be noted that if the initial speed of the BH is more than
Vesc, then the BH spends some time outside the galaxy and its period
becomes longer than 2π/ω. This causes the BH to lose resonance
with other stars. In this case, the wake survives only during half
of a single period, because it moves with a period, that is different
from that of the BH. The decay time in this regime is given by
Chandrasekhar’s value equation (59) rather than by equation (60).
This situation only corresponds to the first (Chandrasekhar) stage
of the BH motion in the paper of Gualandris & Merritt (2008).

4.3 Energy growth

From Figs 7 and 8 we see that when the energy of the BH lowers to
approximately Brownian level

1

2
MV 2 ∼ 1

2
mv2. (61)

a symmetric energy growth begins. It has almost the same rate, but
shorter duration. Energy does not return to the initial value and stops
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Dynamical friction in a homogeneous globe 3607

Figure 8. Numerical calculations and theoretical curve (equation 53) for different BH masses, mstar = 10−3M.

Figure 9. Energy decay time of the BH to the level of 0.02 of the initial
energy (boxes) and the same time predicted by the theoretical equation (54)
(line).

at a level an order of magnitude higher than the Brownian energy.
This ‘kickback’ effect has been first reported by Goerdt et al. (2010).

In the third phase, the energy of the BH fluctuates randomly
with almost constant average amplitude. This amplitude does not
depend on the initial star realization (see Fig. 11) or on a single star
mass m (Fig. 12), so the effect of zero friction is not caused by the
interaction with single stars.

Dependence of the third stage energy on the BH mass is shown
in Fig. 13. There seems to be no evident dependence. This means
that this effect is caused by the fact that after a slight distribution
change there appears a quasi-stationary orbit inside the sphere,
where average energy exchange with stars is absent. This orbit is
fully determined by the new distribution, and, therefore, does not
depend on the BH mass (which is simply the parameter defining
speed of interaction).

Dependence of the third stage energy on the initial energy of the
BH is shown in Fig. 14.

We can try to understand this unexpected phenomenon through
the consideration of the BH wake behaviour. For radial oscillations
of the BH wake oscillates in the antiphase initially. As the amplitude

MNRAS 455, 3597–3611 (2016)
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3608 M. I. Zelnikov and D. S. Kuskov

Figure 10. Time-dependent ‘wake’ near the outer edge of the star distribution. Only narrow region near the border of the sphere is shown where the density
change is the highest. High and low density at the edge alternate depending on the direction of the motion of the black hole. Relative density change is shown
in colour.

Figure 11. Dependence of the third-phase energy on realization. Three
lines show the BH’s total energy as a function of time for three different
initial star distributions with the same mean parameters M = 10−3Mg,
mstar = 10−6Mg.

Figure 12. Dependence of the third-phase energy on the mass of the star.
M = 10−3Mg.

Figure 13. Dependence of the third-phase energy on the BH mass.
mstar = 10−3M. Time is normalized according to equation (54) by the value

of
√

Mg/103M , so that the first stage would be the same for all curves.

of the BH oscillations decreases, the phase shift between the wake
and the BH changes, and finally the wake starts to accelerate the BH.

4.4 Loss of friction

After the end of the first phase of energy decay and after the phase
of symmetrical growth there is a phase with almost no friction. This
result has been already obtained by Gualandris & Merritt (2008) and
Read et al. (2006). In this regime, the star distribution is perturbed
enough to change significantly the trajectory of the BH. To under-
stand this phase, we can refer to equation (40). In Chandrasekhar’s
case, exchange of energy between the BH and a star happens only
once. In our case, exchange is continuous and alternating. While at
the beginning all stars coherently take energy from the BH, at this
stage the coherence of energy exchange is lost owing to the disper-
sion of �1 and the net energy transfer becomes zero (equation 39).
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Dynamical friction in a homogeneous globe 3609

Figure 14. Dependence of the third-phase energy on the initial energy of the
BH. M = 10−3Mg, mstar = 10−6Mg. Time is shifted according to equation
(54), so that Brownian energy is reached at the same time for all energies.

Analysing the energy exchange between the massive satellite and
stars at the stage of zero net energy change, Inoue (2011) pointed out
that at this stage near-Chandrasekhar friction due to non-resonant
particles is completely compensated by positive feedback from res-
onant particles, which constitute a very small fraction about 10−4

of all stars. From our point of view, this exact cancellation re-
veals the fact that ‘resonant’ and ‘non-resonant’ stars in terms of
S. Inoue may be the same stars but at different phases of their
permanent resonant interaction with the massive satellite. Indeed,
as we see from equation (35) in permanent resonance periods of
positive and negative energy transfer form a star to the BH alter-
nate according to the sine law. So for an individual star periods
of quick energy transfer change to periods of slow energy transfer,
while the average energy flux form all stars at this stage remains
at zero.

4.5 Final energy decay

The results of Gualandris & Merritt (2008) and Read et al. (2006)
demonstrate slow energy decay at the final stage of satellite motion.
This residual friction can be explained as Chandrasekhar’s friction
caused only by non-resonant stars. However, our model fails to
describe the final energy decay of the BH. The perturbation of the
star field caused by the BH never vanishes in our model because we
have neglected pair encounters of the stars. This interaction leads to
the star field relaxation in the second order of perturbation theory.
This means that it is of the order of M/Mg = 10−3. Thus our model
fails to describe the galaxy after ωT ≈ 103.

4.6 Conclusions

We have investigated the motion of a massive perturber in a purely
constant-density sphere analytically and numerically. This model
can be considered as an idealization of real constant density cores,
and has the advantage of relative analytical simplicity. This model
captures the main property of constant-density cores underlying
non-Chandrasekhar dynamical friction effects the full resonance of

the perturber with all the stars in a harmonic potential. We have
shown that when inside the core the perturber first experience a
short stage of enhanced super-Chandrasekhar friction, then a stage
of temporal energy increase, and finally a stage with no average
friction, when the perturber energy randomly fluctuates about some
constant value. This stage is the last in our model, and we do not
see relaxation to the regime of Brownian fluctuations, because we
neglect the relaxation due to pair collisions of the BPs. We have
observed qualitatively the same behaviour of the perturber energy
evolution both for circular and radial orbits. We have obtained an
analytical formula for the perturber energy decay rate at the stage
of super-Chandrasekhar friction and have shown that the dynamical
friction force at this stage is half an order in Mobject/Mcore stronger
than in Chandrasekhar’s case. Numerical calculation of the decay
time at the super-Chandrasekhar stage on the perturber mass con-
firms our analytical relationship. Our analytical formula is also in a
good agreement with N-body data of other authors.
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A P P E N D I X A : M E T H O D A P P L I C AT I O N TO
D E R I V E C H A N D R A S E K H A R ’ S FO R M U L A

As an illustration of the method developed in this article let’s de-
rive the dynamical friction on the BH with mass M moving with
constant velocity V through an infinite homogeneous field of stars.
Hereinafter, we denote the position, velocity, momentum and mass
of a single star by r , v, p and m, and the corresponding properties of
the BH by R, V , P and M. Our goal is to reproduce the well-known
Chandrasekhar’s formula (1).

In order to use the perturbation theory we require the effect of the
BH on every star to be treated as a small perturbation. First we try
to find the trajectory of a single star, influenced by the BH. Without
perturbation Hamilton equations for a single star are:

ṙ = ∂H

∂ p
; ṗ = −∂H

∂r
, (A1)

where r = r(r0, p0, t), p = p(r0, p0, t), H is the Hamiltonian of
the system, r0, p0 are initial values of the phase variables.

After introducing a perturbation V the Hamiltonian becomes
H1 = H + V, and the initial data can be considered as functions
of time: r0 = r0(c1, c2, t), p0 = p0(c1, c2, t). Then from Hamilton
equations for H1 and equation (A1) we get:

∂r
∂r0

dr0

dt
+ ∂r

∂ p0

d p0

dt
= ∂V

∂ p
(A2)

and

∂ p
∂r0

dr0

dt
+ ∂ p

∂ p0

d p0

dt
= −∂V

∂r
. (A3)

In Chandrasekhar’s case unperturbed Hamiltonian is simply

H = p2

2 m
, (A4)

and the perturbation due to the BH in Newtonian limit is

V = −GmM/|r − R|. (A5)

Unperturbed trajectories of the stars and of the BH are

r = r0 + p0

m
t

p = p0,
(A6)

and

R = R0 + P0

M
t

P = P0,
(A7)

Putting equation (A6) into equations (A2) and (A3) and taking
into account equations (A5) and (A7), we obtain the following
equations

ṙ0 + t

m
ṗ0 = 0

ṗ0 = GMm
∂

∂r
1

|r − R| (A8)

which can be rewritten in the form

ȧ = GM
∂

∂b
1

|a + bt |

ḃ = −GM
∂

∂a
1

|a + bt | , (A9)

where

a = r0 − R0

b = p0

m
− P0

M

(A10)

are the position and the velocity of the star in the BH reference
frame, respectively. From equation (A9), it can easily be derived
that the angular momentum of the star in this frame

L = [a × b] (A11)

is constant. Equations (A9) are the Hamilton equations with the
Hamiltonian GM|a + bt |−1. Let us consider the motion of the star
averaged by a large period of time 2T. Averaged Hamiltonian is
now

I (a, b) = GM

2T

∫ T

−T

dt

|a + bt | = GM

2T |b| ln
4b4T 2

[a × b]2
. (A12)

Below we assume that T → ∞. As a result of averaging we get a
classical Hamiltonian system for averaged values:

ȧ = ∂I

∂b
; ḃ = −∂I

∂a
. (A13)

From equations (A9) and (A12) it follows that

ḃ = −GM

T

[b × L]

|b|L2 . (A14)

Multiplying this equation by b leads to ḃ
2 = 0 and |b| = const.

Therefore, this is a simple rotational equation

ḃ = [� × b] (A15)

and

� = GM

T

L

|b|L2 = const. (A16)

We see that averaging equation (A12) means the replacement
of real star trajectories by segments of circles with the same net
rotation angle.

The axis of rotation is n = L/|L| and the complete angle of
rotation is

θ = 2T � = 2GM

|b||L| . (A17)

The solution is

bfinal = O(θ )b0, (A18)

where O(θ ) is the matrix of rotation for an angle θ around the vector
n = (x, y, z):∣∣∣∣∣∣∣

c + (1 − c)x2 −sz + (1 − c)xy sy + (1 − c)xz

sz + (1 − c)xy c + (1 − c)y2 −sx + (1 − c)yz

−sy + (1 − c)xz sx + (1 − c)yz c + (1 − c)z2

∣∣∣∣∣∣∣ (A19)

where c = cos θ , s = sin θ . For the final star velocity we have

vfinal = V 0 + O(t)(v0 − V 0). (A20)

The star gains energy

E = m

2

(
v2

final − v2
0

) = m (V 0 · (O(θ ) − 1)(v0 − V 0)) , (A21)

which can be rewritten in the form

E/m = sin θ
(V 0 · [L × (v0 − V 0)])

|L|
+ (1 − cos θ )((v0 − V 0) · V 0). (A22)
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As the star field is infinite and homogeneous, the result cannot
depend on the initial position of the BH. Therefore, we can take
R0 = 0, and therefore L = [r0 × (v0 − V 0)]. θ does not depend on
the sign of r0 and thus after averaging on r0 the first component
vanishes, and we get

E = m(1 − cos θ )((v0 − V 0) · V 0). (A23)

As we assume the influence of the BH on stars to be small, we
take θ < <1, and therefore cosine can be expanded into series, and

E = 2G2M2m

b2 L2
((v0 − V 0) · V 0) (A24)

or

E = 2G2M2m

r2
0 sin2 ϕ

((v0 − V 0) · V 0)

|v0 − V 0|4 , (A25)

where ϕ is the angle between r0 and v0 − V 0.
Replacing m with ρd3r0, integrating over all stars and defining

the friction force as

F =
∑

E

2T V0
=

∑
E

D
(A26)

we get

F = 4πG2M2ρD−1
∫ D/2

0

∫ π−ϕ0

ϕ0

r2 sin ϕdϕdr

r2 sin2 ϕ

·
∫

v0

((v0 − V 0) · V 0)

|v0 − V 0|4 f (v0)d3v0, (A27)

where D is the size of the system, f(v0) is the velocity distribu-
tion assumed to be isotropic and ϕ = arcsin d/r . d is the minimal
distance between stars and the BH’s trajectory. If we approximate
the first integral assuming d � D, we have

F = 4πG2M2ρ ln
D

d

∫
v0

(v0 − V 0 · V 0)

|v0 − V 0|4 f (v0)d3v0. (A28)

The second integral depends much on f(v), but if v0 � V0 it
equals approximately V −2

0 and if v0 � V0 it tends to zero because
of the symmetry. That is why

F = 4πG2M2

V 2
0

ρ(<V0) ln
D

d
, (A29)

which is identical to equation (1).
Logarithmic divergence of the integral at |v0 − V 0| = 0 physi-

cally means that the large part of dynamical friction is exerted by
stars with v ≈ V , i.e. the stars moving in a ‘resonance’ with the BH.
This result corresponds in some way with the result of Tremaine &
Weinberg (1984), who revealed the importance of resonances for
dynamical friction in spherical galaxies.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 455, 3597–3611 (2016)

 by guest on D
ecem

ber 22, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/

