Задачи

1. Распределение Гаусса

Используя формулу Стирлинга $n! \approx \sqrt{2\pi n} \, (n/e)^n$, покажите, что при $N\gg 1$ и $K\gg 1$ вероятность биномиального распределения

$$P_N^K = \frac{N!}{K!(N-K)!}$$
 (1)

стремится к распределению Гаусса.

2. Преобразования Лоренца

Электронно-позитронные пары рождаются в покое в постоянном скрещенном электромагнитном поле $\mathbf{E} = (1 - \varepsilon)B_0 \, \mathbf{e}_y, \, \mathbf{B} = B_0 \, \mathbf{e}_z, \, \text{где } \varepsilon \ll 1.$

Найти среднюю (по времени) энергию частиц.

Указание: В системе, движущейся вдоль оси x со скоростью V=c|E|/|B|, электрического поля нет, так что частицы движутся по окружности вокруг магнитного поля, по-прежнему направленному вдоль оси z. Ответ выразить через Лоренц-фактор $\Gamma=(1-V^2/c^2)^{-1/2}$.

3. Операция ∇

Найти $\nabla \cdot \mathbf{e}_r$ и $\nabla \varphi$.

4. **Прямоугольная сетка** Четыре величины являются компонентами тензора, если при повороте осей на угол φ они преобразуются по формулам

$$m_{x'x'} = m_{xx}\cos^{2}\varphi + m_{xy}\sin\varphi\cos\varphi + m_{yx}\sin\varphi\cos\varphi + m_{yy}\sin^{2}\varphi,$$

$$m_{x'y'} = -m_{xx}\sin\varphi\cos\varphi + m_{xy}\cos^{2}\varphi - m_{yx}\sin^{2}\varphi + m_{yy}\sin\varphi\cos\varphi,$$

$$m_{y'x'} = -m_{xx}\sin\varphi\cos\varphi - m_{xy}\sin^{2}\varphi + m_{yx}\cos^{2}\varphi + m_{yy}\sin\varphi\cos\varphi,$$

$$m_{y'y'} = m_{xx}\sin^{2}\varphi - m_{xy}\sin\varphi\cos\varphi - m_{yx}\sin\varphi\cos\varphi + m_{yy}\cos^{2}\varphi.$$
 (2)

Покажите, что для прямоугольной сетки симметричный тензор должен быть пропорционален единичной матрице.

5. Косая линейка

Найдите метрику для "косой линейки"

$$x' = x - y, (3)$$

$$y' = y. (4)$$

Нарисуйте соответствующую систему координат.

6. Еще одно плоское пространство

• Найдите метрический тензор плоского пространства в координатах $u,\,v,\,z,$ связанных с цилиндрическими координатами $r,\,\varphi$ и z соотношениями

$$u = r(1 - \cos \varphi), \tag{5}$$

$$v = r(1 + \cos \varphi), \tag{6}$$

$$z = z. (7)$$

Нарисуйте соответствующую систему координат.

• То же для сферических координат r, θ и φ , если

$$u = r(1 - \cos \theta), \tag{8}$$

$$v = r(1 + \cos \theta), \tag{9}$$

$$\varphi = \varphi. \tag{10}$$

7. Инвариантность тензора энергии-импульса

Покажите, что при преобразованиях Лоренца в верхнем левом углу тензора энергииимпульса всегда стоит величина $(E^2+B^2)/8\pi$. Для простоты рассмотреть волну с $E_y=B_z$, преобразование вдоль оси x.

Указание: Поля преобразуются по закону

$$E_y' = \frac{E_y - V/c B_z}{\sqrt{1 - V^2/c^2}}, \quad B_z' = \frac{B_z - V/c E_y}{\sqrt{1 - V^2/c^2}}.$$
 (11)

8. Кривизна сферы

• Найти кривизну поверхности для метрики с координатами (r_1, φ)

$$\langle g \rangle = \begin{pmatrix} (1 - r_1^2 / R_c^2)^{-1} & 0 \\ 0 & r_1^2 \end{pmatrix}.$$
 (12)

• Проверьте, что для сферы радиуса $R_{\rm c}$ формула Гаусса дает кривизну $k=R_{\rm c}^{-2}$ и для сферических координат, когда ${\rm d}{\bf r}^2=r^2{\rm d}\theta^2+r^2\sin^2\theta{\rm d}\varphi^2.$

9. Кривизна гиперболоида вращения

Найдите кривизну поверхности гиперболоида вращения

$$x^2 + y^2 - z^2 = R^2. (13)$$

10. Окружности на сфере

Найдите коэффициент λ в выражении

$$L_0/R - 2\pi = \lambda k \delta S \tag{14}$$

(также для сферической поверхности).

11. Формула Эйнштейна

Получите формулу Эйнштейна для мощности излучения гравитационных волн при условии $M_1 \neq M_2$. Покажите, что и в этом случае излучение идет на удвоенной частоте.

12. Гравитационная волна от слияния двух нейтронных звезд

Оцените расстояние, на котором должны слиться две нейтронные звезды, чтобы гравитационная волна на Земле была бы заметна и без приборов ($\delta g = 0.1\,g$).

13. Объем Вселенной

Найдите трехмерный объем Вселенной для $\kappa = +1$ в метрике Фридмана-Робертсона-Уолкера.

14. Про эллипс

Переходя при интегрировании к углу E (экцентрическая аномалия)

$$r\cos\varphi = a(\cos E - e), \tag{15}$$

$$r\sin\varphi = a\sqrt{1 - e^2}\sin E,\tag{16}$$

найдите среднее по веремени расстояние планеты от фокуса < r(t) >.

15. Функция масс

Рассмотрев движение по круговым орбитам двух масс M_1 и M_2 , найдите комбинацию масс и угла наклона орбиты i, которую можно определить, измеряя лучевую скорость движения звезды 1.

16. Черная дыра

Найдите расстояние между точками с координатами $r=r_{\rm g}$ и $r=2r_{\rm g}$ для шварцшильдовской черной дыры.

17. Движение периастра

В рамках нерелятивистской теории Всемирного тяготения для потенциала

$$\varphi_{\rm g} = -\frac{GM}{r - r_{\rm g}} \tag{17}$$

(т.н. потенциал Пачиньского-Вииты) найдите поворот орбиты $\Delta \varphi$ за один период обращения при условии $r\gg r_{\rm g}$.